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a b s t r a c t

We study Eulerian polynomials as the generating polynomials
of the descent statistic over Stirling permutations—a class of
restricted multiset permutations. We develop their multivariate
refinements by indexing variables by the values at the descent tops,
rather than the position where they appear. We prove that the
obtainedmultivariate polynomials are stable, in the sense that they
do not vanish whenever all the variables lie in the open upper half-
plane. Our multivariate construction generalizes the multivariate
Eulerian polynomial for permutations, and extends naturally to
r-Stirling and generalized Stirling permutations.

The benefit of this refinement is manifold. First of all, the
stability of the multivariate generating functions implies that their
univariate counterparts, obtained by diagonalization, have only
real roots. Second, we obtain simpler recurrences of a general
pattern, which allows for essentially a single proof of stability
for all the cases, and further proofs of equidistributions among
different statistics. Our approach provides a unifying framework
of some recent results of Bóna, Brändén, Brenti, Janson, Kuba,
and Panholzer. We conclude by posing several interesting open
problems.
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1. Introduction

The polynomials

‘‘α = x
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γ = x + 4x2 + x3
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δ = x + 11x2 + 11x3 + x4

ε = x + 26x2 + 66x3 + 26x4 + x5

ζ = x + 57x2 + 302x3 + 302x4 + 57x5 + x6 etc.’’
appeared in Euler’s work on a method of summation of series [16]. Since then these polynomials,
known as the Eulerian polynomials and their coefficients, the so-called Eulerian numbers have been
widely studied in enumerative combinatorics, especially within the combinatorics of permutations.
They serve as generating functions of several statistics such as descents, exceedances, or runs of
permutations. They are intimately connected to Stirling numbers, and also the binomial coefficients,
via the famous Worpitzky-identity. See the notes of Foata and Schützenberger [17,18] for a survey
and the history of these polynomials.

It is often useful to consider multivariate refinements of polynomials. In many instances with the
help of such refinements more general results can be obtained with significantly shorter and simpler
proofs. This is especially the case if the multivariate polynomials satisfy some additional property, for
example, multiaffine and homogeneous polynomials are relatively easy to handle. See [4,22,37] for a
few of the numerous recent successes using multivariate generalizations.

In this paper, we study statistics over Stirling permutations — a class of restricted multiset
permutations, defined by Gessel and Stanley [20]. We give a multivariate refinement of the descent
generating polynomial, by indexing variables based on the values at the descent tops, rather than
the positions where they appear. Our construction generalizes the one in [23] for multivariate
Eulerian polynomials and is further extended to joint statistic generating polynomials over r-Stirling
permutations, and generalized Stirling permutations. We prove that these polynomials are stable
strengthening recent results of Bóna [2], Brändén et al. [8], Brenti [9], and Janson et al. [25,26].

1.1. Organization

In Section 2, we give the necessary definitions and discuss previous work. We define the statistics
over permutations and Stirling permutations that we study, and the related Eulerian numbers and
polynomials. We give theorems that state that the roots of the Eulerian polynomials and the second-
order Eulerian polynomials are all real. We define the notion of stability, a multivariate generalization
of real-rootedness, and review some results from the theory of stable polynomials. We give Brändén’s
proof of a closely related multivariate generating polynomial.

In Section 3, we begin with a multivariate refinement of the Eulerian polynomial that simulta-
neously refines both the descent and the weak exceedance statistic. Next we apply Brändén’s proof
to show stability for the multivariate Eulerian polynomial. We then generalize this result to Stirling
permutations, by proving that the multivariate refinement of the second-order Eulerian polynomial
is also stable. In fact, the recursion satisfied by these multivariate polynomials can be modeled by a
(generalized) Pólya urn, one considered by Janson et al. in [26]. This model allows us to further extend
our results to r-Stirling permutations and even generalized Stirling permutations. By appropriately
defining new statistics for these objects, we obtain more general multivariate Eulerian polynomials
and stability results that contain the previous ones as special cases. As a corollary, we also obtain a
multivariate generalization of a theorem of Brenti on the real-rootedness of descent generating poly-
nomials over generalized Stirling permutations.

Finally, in Section 4, we discuss further connections to Legendre–Stirling permutations, q-analogs,
Durfee squares and present some open questions.

2. Previous work

2.1. Statistics on permutations and Stirling permutations

Let n be a positive integer, and let Sn denote the set of all permutations of the set {1, . . . , n}. For a
permutation π = π1 . . . πn ∈ Sn, let

A(π) = {i | πi−1 < πi},

D(π) = {i | πi > πi+1},
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with π0 = πn+1 = 0, denote the ascent set and the descent set of π , respectively. One way to think
about these sets is to consider the permutationπ paddedwith zeros from the front and the back. Note
that with this convention, i = 1 is always an ascent and i = n is always a descent. Also note that i
is the index of the larger element of the two, both in the definition of the ascent set and the descent
set. We will call πi with i ∈ D(π) a descent top, and similarly πj with j ∈ A(π) an ascent top. We
use des(π) = |D(π)| and asc(π) = |A(π)| to denote the cardinality of these sets, the number of
descents and ascents in π , respectively.

Gessel and Stanley defined the following restricted subset of multiset permutations called Stirling
permutations in [20]. Let Qn denote the set of permutations of the multiset {1, 1, 2, 2, . . . , n, n} in
which, for all i, all entries between the two occurrences of i are larger than i. For instance, Q1 = {11},
Q2 = {1122, 1221, 2211}, and from a recursive construction rule – observe that n and n have to be
adjacent inQn – it is not difficult to see that |Qn| = 1 ·3 · · · · ·(2n−1) = (2n−1)!!. Gessel and Stanley
also studied the descent statistic over Qn. The notions of ascents and descents can be easily extended
to Stirling permutations. Bóna in [2] introduced an additional statistic called plateau and studied the
distribution of the following three statistics over Stirling permutations. For σ = σ1σ2 . . . σ2n ∈ Qn,
let

A(σ ) = {i | σi−1 < σi},

D(σ ) = {i | σi > σi+1},

P (σ ) = {i | σi = σi+1}

denote the set of ascents, descents and plateaux of σ , respectively. As before, we pad the Stirling
permutation with zeros, i.e., we define σ0 = σ2n+1 = 0. So, for σ ∈ Qn, i = 1 is always an ascent and
i = 2n is always a descent. We will use asc(σ ) = |A(σ )|, des(σ ) = |D(σ )| and plat(σ ) = |P (σ )| to
denote the number of ascents, descents, and plateaux in σ .

Note that, the sum of the number of ascents, descents and plateaux in any σ ∈ Qn is 2n + 1, the
number of gaps (counting the padding zeros). Interestingly, the three statistics are equidistributed
over Qn, as was shown in [2].

2.2. Eulerian numbers and polynomials

Eulerian numbers (see sequence A008292 in theOEIS [36]) denoted by
 n
k


, or sometimes by A(n, k),

are amongst the most studied sequences of numbers in enumerative combinatorics. They count, for
example, the number of permutations of {1, . . . , n} with k descents:n

k


:= |{π ∈ Sn | des(π) = k}|. (1)

Note that here 1 ≤ k ≤ n, since π0 = πn+1 = 0 in our definition of descent. This indexing of the
Eulerian numbers is in correspondence with the classic books by Comtet [13], Riordan [31], and
Stanley [38].

It can be deduced from the definition in (1), that the Eulerian numbers satisfy the following
recursion:

n + 1
k


= k

n
k


+ (n + 2 − k)


n

k − 1


, (2)

for 2 ≤ k ≤ n+ 1, with initial condition

1
1


= 1 and boundary conditions

 n
k


= 0 for k ≤ 0 or n < k.

In this paper, we investigate their ordinary generating function, the Eulerian polynomials:

An(x) =

n
k=1

n
k


xk =


π∈Sn

xdes(π), (3)

along with several generalizations of them.
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A consequence of the recursion for the Eulerian numbers (2) is a recursion for the Eulerian
polynomials, namely, for any n ≥ 1,

An+1(x) = (n + 1)xAn(x) + x(1 − x)A′

n(x). (4)

This recursion gives rise to the following classical result already noted by Frobenius [19].

Theorem 2.1. An(x) has only real roots. (In addition, the roots are all distinct, and nonpositive.)

See [3, Theorem 1.33] for a proof using Rolle’s theorem.

2.3. Second-order Eulerian numbers

We adopt the notationn
k


:= |{σ ∈ Qn | des(σ ) = k}| (5)

with 1 ≤ k ≤ n. Following [21], we refer to these numbers as the ‘‘second-order Eulerian numbers’’1
since they satisfy a recursion (see [20], for example) very similar to (2). For 2 ≤ k ≤ n + 1, we have

n + 1
k


= k

n
k


+ (2n + 2 − k)


n

k − 1


, (6)

with initial condition


1
1


= 1 and boundary conditions

 n
k


= 0 for k ≤ 0 or n < k. Note that

our indexing is in agreement with sequence A008517 in [36] and with the definition of the statistics
adopted from [2], however it differs from the one in [21].

The second-order Eulerian numbers are not as well studied as the Eulerian numbers. Nevertheless,
they are known to have several interesting combinatorial interpretations. Apart from counting Stirling
permutations Qn with k descents [20], k ascents, k plateaux [2], these numbers also count the number
of Riordan trapezoidal words of length nwith k distinct letters [32], the number of rooted plane trees
on n + 1 nodes with k leaves [25], and matchings of the complete graph on 2n vertices with n − k
left-nestings (Claim 6.1 of [27]).

Bóna proved the following theorem (analogous to Theorem 2.1) on the roots of the ordinary
generating function of the second-order Eulerian numbers.

Theorem 2.2 (Theorem 1 of [2]). Cn(x) =
n

k=1

 n
k


xk has only real (simple, nonnegative) roots.

Observe that the following recursion (given in [32])

Cn+1(x) = (2n + 1)xCn(x) + x(1 − x)C ′

n(x) (7)

satisfied by these generating polynomials is strikingly similar to (4).

2.4. Polynomials with only real roots

For a generating polynomial to have only real roots is an important property in combinatorics.
It is often used to show that a (nonnegative) sequence {bi}i=0...n is log-concave (b2i ≥ bi+1bi−1) and
unimodal (b0 ≤ · · · ≤ bk ≥ · · · ≥ bn). If the generating polynomial

n
i=0 bix

i has only real roots,
then the above properties hold for the coefficients. In fact, even more is true, e.g., there are at
most two modes, and the coefficients satisfy several nice properties such as Newton’s inequalities,
Darroch’s theorem, etc. Furthermore, the normalized coefficients bi/(


i bi) – viewed as a probability

distribution – converge to a normal distribution as n goes to infinity, under the additional constraint
that the variance tends to infinity [1,24].

1 Not to be confused with 2n
− 2n (see sequence A005803 in [36]).
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In what follows, we give a generalization of the Eulerian polynomials An(x) tomultiple variables, in
such away that amultivariate analog of Theorem 2.1 holds for them (in fact, themultivariate theorem
will contain the univariate version as a special case). For this, we need a generalization of the real-
rooted property for polynomials in multiple variables, the notion of stability with which we continue
next.

2.5. Stable polynomials and stability preservers

We call a polynomial f (z1, . . . , zm) ∈ R[z1, . . . , zm] stable, if whenever ℑ(zi) > 0 for all i then f
does not vanish. Note that a univariate polynomial f (z) ∈ R[z] has only real roots if and only if it is
stable.

Thanks to the recentwork of Borcea and Brändén, the theory of stable polynomials has evolved into
a very applicable technique. For a concise collection of the latest results and some recent applications
of the theory, we refer to the survey of Wagner [39] and the references therein.

In this paper, we rely on Borcea and Brändén’s characterization of linear operators that preserve
stability. Such operators map stable polynomials to stable ones or to the identically 0 polynomial. Our
proofs are based on the following two results on stability preserving operators.

Lemma 2.3 (Cf. Lemma 2.4 of [39]). The following operations preserve stability of polynomials in
R[z1, . . . , zn].
(a) Permutation: for any permutation σ ∈ Sn, f → f (zσ(1), . . . , zσ(n)).
(b) Diagonalization: for 1 ≤ i < j ≤ n, f → f (z1, . . . , zn)|zi=zj .
(c) Specialization: for a ∈ R, f → f (a, z2, . . . , zn).
(d) Translation: f → f (z1 + t, z2, . . . , zn) ∈ R[z1, . . . , zn, t].
(e) Differentiation: f → ∂ f /∂z1.

We call a multivariate polynomial multiaffine if it has degree at most 1 in each variable. Theorem
2.2 of [5] gives a complete characterization of real stability preservers formultiaffine polynomials.We
will only need one part of the theorem, the following sufficient condition.

Lemma 2.4 (Cf. Theorem 2.2 of [5]). Let f ∈ C[z1, . . . , zn] be a stable multiaffine polynomial and let
T denote a linear operator acting on the z1, . . . , zn variables. Suppose that GT = T (

n
i=1(zi + wi)) ∈

C[z1, . . . , zn, w1, . . . , wn] is a stable polynomial. Then T (f ) is either stable or identically 0.

2.6. Towards a stable multivariate Eulerian polynomial

Brändén and Stembridge suggested finding a stable multivariate generalization of the Eulerian
polynomials. In [23], the polynomial

An(x) =


π∈Sn


πi≥i

xπi , (8)

with x = x1, . . . , xn was conjectured to be stable. It was also proven to be stable for n ≤ 5.
Brändén considered the closely related multivariate generating polynomial2:

Ãn(x) =


π∈Sn


πi>πi+1

xπi , (9)

and the following homogeneous extension of it:

Ãn(x, y) =


π∈Sn


πi>πi+1

xπi


πi<πi+1

yπi+1 , (10)

and proved the following [6].

2 We use Ã to emphasize that this generating polynomial has degree one less than the Eulerian polynomials defined in (8). In
particular, An(x, . . . , x) = xÃn(x, . . . , x), which is sometimes referred to in the literature as the classical Eulerian polynomial.
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Theorem 2.5. Ãn(x, y) is a stable polynomial.
For the sake of completeness, we give the proof.

Proof. The proof is by induction. The statement holds for the base case n = 1, since the polynomial
Ã1(x1, y1) = 1 is stable. For n ≥ 1, the polynomials satisfy the following recurrence:

Ãn+1(x, y) = (xn+1 + yn+1)Ãn(x, y) + xn+1yn+1∂ Ãn(x, y), (11)

where ∂ =
n

i=1 ∂/∂xi +
n

j=1 ∂/∂yj. This can be seen by observing the effect on the sets {πi | πi−1 <
πi} and {πi | πi > πi+1} of inserting n + 1 into a permutation π ∈ Sn. Now the statement follows
from the fact that T = (xn+1 + yn+1) + xn+1yn+1∂ is a stability preserving operator (by an application
of Lemma 2.4). �

By letting yi = 1 for all i, and applying Lemma 2.3 we obtain the following.

Corollary. Ãn(x) is a stable polynomial.
The multivariate Monotone Column Permanent Theorem (Theorem 3.4 of [8]) contains

Theorem 2.5 as the special case for a Ferrers matrix (equivalently, a Ferrers board) of staircase shape.
As a consequence of this matrix interpretation, and a bijection of Riordan, it was also noted in [8] that

Ãn(x) =


π∈Sn


πi>i

xπi . (12)

3. Our results

We first note that a similar result holds for the multivariate Eulerian polynomial defined in (8)
as well. Namely, the multivariate refinement An(x) proposed in [23] refines the descent and weak
exceedance statistics simultaneously.

Proposition 3.1.

An(x) =


π∈Sn


i∈D(π)

xπi

=


π∈Sn

 
πi>πi+1

xπi


xπn .

Proof. Follows from a modification of the above mentioned bijection of Riordan [31]. �

The second line of the equation is given to highlight the difference between this formula and the
one in (9), since n ∈ D(π) in our notation.

Consider the following homogenization of An(x):

An(x, y) =


π∈Sn


i∈D(π)

xπi


i∈A(π)

yπi . (13)

Theorem 3.2. An(x, y) is a stable polynomial.
Proof. A1(x1, y1) = x1y1 which is stable. Note that the following recursion

An+1(x, y) = xn+1yn+1∂An(x, y), (14)

holds for n ≥ 1,where ∂ again denotes the sumof all partials. Since ∂ is a stability preserving operator,
the same inductive proof as in Theorem 2.5 goes through. �

We note that indexing by the values πi at the ascent tops and descent tops is crucial. If instead the
descents and ascents were indexed by the position iwhere they appear, the polynomials would fail to
be stable. From Theorem 3.2we get the following corollary, which is also a special case of Theorem 3.4
of [8] for Ferrers boards of staircase shape.

Corollary. An(x) is a stable polynomial.
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In [8], the stability results for Ãn(x) were further extended to obtain a stable multivariate
generalization of the multiset Eulerian polynomial previously studied by Simion [35]. We continue
along a similar direction as well, and extend Theorem 3.2 to a restricted subset of multiset
permutations, the Stirling permutations.

3.1. Multivariate second-order Eulerian polynomials

Janson in [25] suggested studying the trivariate polynomial that simultaneously counts all three
statistics of the Stirling permutations (see also [14]):

Cn(x, y, z) =


σ∈Qn

xdes(σ )yasc(σ )zplat(σ ). (15)

We go a step further, and introduce a refinement of this polynomial obtained by indexing each
ascent, descent and plateau by the value where they appear, i.e., ascent top, descent top, plateau:

Cn(x, y, z) =


σ∈Qn


i∈D(σ )

xσi


i∈A(σ )

yσi


i∈P (σ )

zσi . (16)

For example, C1(x, y, z) = x1y1z1, C2(x, y, z) = x2y1y2z1z2 + x1x2y1y2z2 + x1x2y2z1z2.
These polynomials are multiaffine, since any value v ∈ {1, . . . , n} can only appear at most once as

an ascent top (similarly, at most once as a descent top or a plateau, respectively). This is immediate
from the restriction in the definition of a Stirling permutation. Furthermore, each gap (j, j + 1) for
0 ≤ j ≤ 2n in a Stirling permutation σ ∈ Qn is either a descent, or an ascent or a plateau. This implies
that Cn(x, y, z) is also homogeneous, and of degree 2n + 1.

Theorem 3.3. The polynomial Cn(x, y, z) defined in (16) is stable.
Proof. Note that

Cn+1(x, y, z) = xn+1yn+1zn+1∂Cn(x, y, z), (17)

where ∂ =
n

i=1 ∂/∂xi +
n

i=1 ∂/∂yi +
n

i=1 ∂/∂zi. The recursion follows from the fact that each
Stirling permutation in Qn+1 is obtained by inserting (n + 1)(n + 1) into one of the 2n + 1 gaps of
some σ ∈ Qn. This insertion introduces a new ascent, a new plateau, a new descent, and removes the
statistic – either ascent, plateau, or descent – that existed in the gap before. From here, the proof is
analogous to that of Theorem 2.5. �

There are some interesting corollaries of this theorem. First, note that, diagonalizing variables
preserves stability (see part b in Lemma 2.3). Hence, by setting x1 = · · · = xn = x, y1 = · · · = yn = y,
and z1 = · · · = zn = z, we immediately have the following.

Corollary. The trivariate generating polynomial Cn(x, y, z) defined in (15) is stable.

Specializing variables also preserves stability (part c of Lemma 2.3). Thus, by setting y = z = 1,
we get back Theorem 2.2.

If we specialize variables first, without diagonalizing, namely set y1 = · · · = yn = z1 = · · · =

zn = 1 we get a different corollary.

Corollary. The multivariate descent polynomial for Stirling permutations

Cn(x1, . . . , xn) =


σ∈Qn


i∈D(σ )

xσi (18)

is stable.

From the symmetry of the recursion (17) and the fact that C1(x, y, z) = xyz we also get the
following.

Corollary (Theorem 2.1 of [25]). The trivariate polynomial Cn(x, y, z) defined in (15) is symmetric in the
variables x, y, z.

Corollary (Proposition 1 of [2]). The ascents, descents and plateaux are equidistributed over Qn.
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3.2. Generalized Pólya urns and generalized Stirling permutations

One canmodel the differential recursion in (17) as follows (see theUrn Imodel in [25]). Step 1: start
with r = 3 balls in an urn. Each ball has a different color: red, green, blue. At each step i, for i = 2 . . . n,
we remove one ball (chosen uniformly at random) from the urn and put in three new balls, one of each
color. The distribution of the balls of each color corresponds to the distribution of the ascents (red),
descents (green), and plateaux (blue) in a Stirling permutation. Our multivariate refinement can be
thought of as simply labeling each ball by a number i that represents the step i when we placed the
ball in the urn. Clearly, this method can be further generalized to r colors, as was done by Janson et al.
in [26], which led them to consider statistics over generalizations of Stirling permutations.

We begin with one such generalization suggested by Gessel and Stanley [20], called r-Stirling
permutations, which have also been studied by Park in [28–30] under the name r-multipermutations.
An r-Stirling permutation of order n is a generalized Stirling permutation of the multiset {1r , . . . , nr

}.
Formally, let r be a positive integer, and let Qn(r) denote the set of multiset permutations of
{1r , . . . , nr

} with the property that all elements between two occurrences of i are at least i. In other
words, every element that appears between ‘‘consecutive’’ occurrences of i is larger than i, or in pattern
avoidance terminology, Qn consists of multiset permutations of {1r , . . . , nr

} that are 212-avoiding.
Janson et al. in [26] considered various statistics over r-Stirling permutations. We define the

ascents and descents identically as in the two previous sections (with the convention of padding with
zeros, σ0 = σrn+1 = 0). In addition, we will adopt their definition of the j-plateau, which is as follows.
For an r-Stirling permutation σ , a j-plateau of σ , denoted by Pj(σ ), is the set of indices i such that
σi = σi+1 where σ1 . . . σi−1 contains j − 1 instances of σi. In other words, a j-plateau counts the
number of times the jth occurrence of an element is followed immediately by the (j+1)st occurrence
of it. We note that there are j-plateaux for j = 1 . . . r − 1 in Qn(r).

Now we can define a multivariate polynomial that is analogous to the previously studied An(x, y)
and Cn(x, y, z). For r ≥ 1, let

En(x, y, z1, . . . , zr−1) =


σ∈Qn(r)

 
i∈D(σ )

xσi

 
i∈A(σ )

yσi


r−1
j=1

 
i∈Pj(σ )

zj,σi

 , (19)

where zj = zj,1, . . . , zj,n for all j = 1, . . . , r − 1.

Theorem 3.4. En(x, y, z1, . . . , zr−1) is a stable polynomial.

The proof is identical to that of An and Cn (see Theorems 3.2 and 3.3). As a corollary, we obtain
that the diagonalized polynomial, En(x, y, z1, . . . , zr−1) is symmetric in the variables x, y, z1, . . . , zr−1
which implies the results of Theorem 9 in [26]. Analogously, we could define the rth order Eulerian
numbers as the number of r-Stirling permutations with exactly k descents (or equivalently, k ascents
or k j-plateaux for some fixed j). We suggest the notation

 n
k


r , r being the shorthand for the r angle

parentheses. The results for the special cases of r = 1 and r = 2 give the results for permutations and
Stirling permutations, respectively.

Janson et al. in [26] also studied statistics over generalized Stirling permutations. These permu-
tations were previously investigated by Brenti in [9,10]. The set of generalized Stirling permutations
of rank n, denoted by Q∗

n , is the set of all permutations of the multiset {1k1 , . . . , nkn} with the same
restriction as before. Namely, that for each i, for 1 ≤ i ≤ n, the elements occurring between two
occurrences of i are at least i.

We can further generalize the multivariate Eulerian polynomials by simply extending the above
defined statistics to generalized Stirling permutations. This corresponds to an urn model with balls
colored with κ = maxni=1 ki + 1 many colors: c1, c2, . . . , cκ . We start with k1 + 1 balls in the urn
colored with c1, . . . , ck1+1 (each ball has a different color). In each round i, for 2 ≤ i ≤ n, we remove
one ball and put in ki + 1 balls, one from each of the first ki + 1 colors, c1, . . . , cki+1. We can then
define a multivariate polynomial counting all statistics simultaneously,

En(x, y, z1, . . . , zκ−2) =


σ∈Q∗

n

 
i∈D(σ )

xσi

 
i∈A(σ )

yσi


κ−2
j=1

 
i∈Pj(σ )

zj,σi

 . (20)
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Theorem 3.5. En(x, y, z1, . . . , zκ−2) is stable.

Proof.

En+1(x, y, z1, . . . , zλ−1) = xn+1yn+1


kn+1−1

ℓ=1

zℓ,n+1


∂En(x, y, z1, . . . , zκ−2),

where λ = max(κ −1, kn+1), and ∂ , as before, denotes the sum of all first-order partials (with respect
to all variables in En). �

Theorem 3.4 is a special case of Theorem 3.5 with ki = r , for all 1 ≤ i ≤ n. Note that the
diagonalized version of the polynomial defined in (20) need not be a symmetric function in all
variables x, y, z1, z2, . . . , zκ−2. Nevertheless, if we specialize all variables except x, i.e., by letting
y = z1 = · · · = zκ−2 = 1 we get the following result of Brenti.

Theorem 3.6 (Theorem 6.6.3 in [9]). The descent generating polynomial over generalized Stirling
permutations

En(x) =


σ∈Q∗

n

xdes(σ )

has only real roots.

Another interesting generalization could be obtained using the urn model. Consider a scenario
when instead of removing one ball, s ≥ 2 balls are removed in each round. This way, we could define
(r, s)-Eulerian numbers, polynomials, and investigate whether they are stable or not.

4. Further connections and open problems

4.1. Schröder and Legendre–Stirling numbers

Riordan in [32], along with devising the recurrence shown in (7) for the second-order Eulerian
polynomials Cn(x), mentions another related polynomial Tn(x) = 2nCn(x/2), whose coefficients are
related to the Schröder numbers. The recurrence

Tn+1(x) = (2n + 1)xTn(x) + (2x − x2)T ′

n(x)

satisfied by these polynomials is almost identical to the one for Cn(x), so Tn(x) clearly seems
susceptible to similar multivariate generalization. It would be interesting to study the combinatorial
interpretation arising from such a multivariate refinement.

Egge defined the following family of permutations that arose while studying the Legendre–Stirling
numbers (see Definition 4.5 in [15]). For each n ≥ 1, letMn denote the multiset

Mn = {1, 1, 1̄, 2, 2, 2̄, . . . , n, n, n̄}

in which we have two unbarred copies of each integer j with 1 ≤ j ≤ n and one barred copy of each
such integer. A Legendre–Stirling permutation π is a permutation of Mn such that if i < j < k and
πi = πk are both unbarred, then πj > πi. A descent in a Legendre–Stirling permutation (which fits
nicely with our definition of a descent) is a number i, 1 ≤ i ≤ 3n, such that i = 3n or πi > πi+1.

Now, let Bn,k denote the number of Legendre–Stirling permutations ofMn with exactly k descents.
Egge showed the following theorem.

Theorem 4.1 (Theorem 5.1 of [15]). For n ≥ 1, the generating polynomial
2n−1

k=1 Bn,kxk has distinct, real,
nonpositive roots.

Finding a similar refinement (perhaps by defining auxiliary statistics, if needed) might lead to a
better understanding of these permutations.
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4.2. Stable q-analogues

Foata and Schützenberger introduced the following q-analog for Eulerian polynomials in [18]

An(x; q) =


π∈Sn

qcyc(π)xwex(π), (21)

wherewex(π) counts the number ofweak exceedances {i | π(i) ≥ i} and cyc(π) counts the number of
cycles of the permutation π . Brenti [11] proved that this polynomial has only real roots when q > 0,
and subsequently, Brändén [7] extended this result for the case when q was a negative integer. A
special case of Proposition 4.4 in [8] for Ferrers boards of staircase shape, which gives a stability result
for theα-permanent can be interpreted as the following q-analog ofmultivariate Eulerian polynomials
(with q = α). Thus, generalizing the above results of Brenti, in [8] essentially it was shown that

An(x; q) =


π∈Sn

qcyc(π)

πi≥i

xπi (22)

is stable when q > 0.
Another general form of q-analogues is given by the bivariate generating polynomials:

AM,E
n (x; q) =


π∈Sn

qstatM(π)xstatE(π), (23)

where statM(π) refers to a Mahonian statistic, a statistic that is equidistributed with MacMahon’s
major index maj(π) =


πi>πi+1

i over permutations, and statE stands for an Eulerian statistic, a
statistic that is equidistributed with the descents or weak exceedances. It would be interesting
to see if a certain multivariate generating polynomial of Mahonian–Eulerian statistics, such as

π∈Sn
qmaj(π)


i∈D(π) xπi , is stable. See [34] for various q- and (q, p)-analogs and recent unimodality

results on their coefficients.

4.3. Durfee polynomials

Sagan and Savage showed that the Foata fundamental map φ over multiset permutations of
{1m, 2n

} that can be interpreted as lattice paths has the following properties (see Corollary 2.4 in [33]).
Let σ ∈ {1m, 2n

}, then:

1. maj(σ ) = inv(φ(σ )) = |λ|,
2. des(σ ) = durfee(λ),

where inv(σ ) denotes the number of inversions in the multiset permutation σ , λ is the partition cut
out by φ(σ) – when viewed as a lattice path – from the m × n rectangle, |λ| denotes the size of the
partition, and durfee(λ) the size of the Durfee square of λ.

Simion proved that the Eulerian multiset polynomial has only real zeros [35], which in the light of
the above corollary of Sagan and Savage immediately implies that the polynomial

λ∈Pm,n

xdurfee(λ)

has real roots only, where Pm,n denotes the set of all partitions that fit in an m × n rectangle.
Furthermore, from this corollary one can easily obtain a reformulation of the conjectures of Canfield
et al. in [12] on the roots of Durfee polynomials. For example, they conjectured that the Durfee-
generating polynomial over partitions of a fixed size, i.e.,


|λ|=n x

durfee(λ) has only real roots, which
using the Foata bijection φ is equivalent to saying that the following restricted multiset Eulerian
polynomial

σ∈{1m,2m}

maj(σ )=m

xdes(σ ) (24)

has only real roots.
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