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NOTES 
Edited by William Adkins 

A Simple Proof of the Hook Length Formula 

Kenneth Glass and Chi-Keung Ng 

In this note, we give a simple and direct proof for the "Hook Length Formula." The 

simplicity of our proof relies on the usage of the residue theorem as a short cut. 
The number of standard Young tableaux for a given Ferrers diagram . is the dimen- 

sion of the irreducible representation of the symmetric group corresponding to X. The 
hook length formula (which was first proved in [1]) is a method for calculating this 
number and is a surprisingly beautiful formula (because the problem looks complex 
but the formula looks naive). Let us begin by giving the precise definitions of Ferrers 

diagrams, standard Young tableaux, and the hook length formula. 

Suppose that N and m are positive integers and that k = (kI, ..., Xm) is a sequence 
in N U {0) such that Xk > k2 > 

"'" 
> X- m and EmI, i = N. We can think of this as an 

array of boxes in which the number of boxes in the top row is i , the number of boxes 
in the second row is k2, and so on. Such a diagram is called a Ferrers diagram. For 

example, in the case when N = 12, m = 4, and X = (5, 3, 3, 1), we have the following 
picture: 

Given such a Ferrers diagram, a standard Young tableau is a bijection T : [X] -- 
{1, . . . , N} (where [k] = {(i, j) :1 < i < m, I < j 

<</ 
}) such that T(i, j) < 

T(i', j') if i < i' and j < j'. In terms of a picture, we can think of a standard Young 
tableau as a distribution of {1,2,..., N} into the boxes of the Ferrers diagram such 
that the numbers in each row are increasing from left to right and the numbers in each 
column are increasing from top to bottom. The following is an example of a standard 

Young tableau for the Ferrers diagram (5, 3, 3, 1): 

1 3 4 6 12 
2 5 9 
7 8 11 
10 

An interesting question is: How many standard Young tableaux are therefor a given 
Ferrers diagram? As noted, the hook length formula is an answer to this question. 
Suppose that k = ( ?X . m.. ,m) is a Ferrers diagram. For any (i, j) in [X], we let k = 

max{k : j < 
k} (i.e., X' is the length of the jth column (from the left)). The hook 

length for the (i, j)-node (i.e., the box in the ith row and jth column) is the number 

X' - i + Xi - j + 1 and will be denoted by hij. In pictorial terms, the hook length for 
the (i, j)-node is 1 plus the number of boxes below and the number of boxes to the 
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right of that node (that's why these sums are called hook lengths). So, for the Ferrers 
diagram (5, 3, 3, 1) we have h22 = 3: 

and h21 = 5: 

For any Ferrers diagram 1 = 
(X1,...., m), 

we let fX =- f(Xl,...,Xm) be the number of 
standard Young tableaux for 1 (note that we use the convention that f(o,o,...,o) = 1). 
The hook length formula states: 

N!( 
fx -- 

(1) 
n(i,j)E[)•] hij 

As an example, for X = (5, 3, 3, 1), we have fX = 4158. 
The function 1 F-> f' satisfies a recursion relation. In order to present this relation 

clearly, we first establish the following notation. Let 

Ao := (11,..., ,m) :i E NU {0} for i = 1,2,..., m and Xh >l2 > 
-"' 

- 
1xm} 

and 

m 

A:- Ao U U 
1(,1,..... 

k-l, 1k 
- 1, Xk+1, ..., Xm) : (Xl,..., 1.m) 

E A0}. 
k= 1 

In other words, (.1, .... , m) belongs to A \ A0 if and only if 1i > .i+1 (we put ?.m+l = 

0) except for one i in {1, ..., m} where 1.i = Xi+1 - 1 (in this case Xi could be -1). 
For any 1 = (1, 

...., 
Xm) in A \ A0, we set fx = 0. 

Now we can explain the recursion relation. For any standard Young tableau T 
for a Ferrers diagram X it is clear that there exists i satisfying 1 < i < m such that 
T (i, X1) = N. Therefore, we see that: 

(i) 
f(Xl... 

,Xm) = 0 for any (Q1,..., Xm) in A \ Ao; 
(ii) f(o,o,...o,o) = 1; 

(iii) f(X.....Xkm) = = 
f(l...Xk_,X-k-1 

,Xlk 1.+1Xm) for any (X1,..., Xm) in Ao with 

It is easily seen that these conditions uniquely determine f(Xl.....,m). Using this fact, we 
can establish the following formula: 

Theorem 1. Let XI > ... > Xm > 0. If N = 
Y-I 

k= , then 

( ) N! -j>i(i -1j+1-i)(2) 
H 

_m-1( m--I 

+ 1)! ( 
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Proof For any (X ,..., Xm) in A, we let 

(Em=1 Xk)! H-j>i(i - + j - i) if 
SI if k -1 for all k, 

O 
HI0 (xm-l 

+ )! 

0 if Xk 
- 

-1 for some k 

(here we use the convention that empty products equal one). It is clear that (0 : 0 : 

S.. : 0) = 1. Moreover, if i -= =i+1 - 1 for some i with 1 < i < m - 1, then 
( ..l : . : Xm) = 0 because Xi - Xji+ + i - (i - 1) = 0. Therefore, in order to show 
f( ...Xm) - (X 1 :'. : Xm) for any ( 1, ..., Xm) in A0, we need to prove only that, if 
(X1,...I, Xm) belongs to Ao with X, > 1, then 

m 

( 
1" 

: 
" 

: Xm) = L 
(•1. 

" 
k-l 

: .k-1 k+l ":... m). (3) 
k=l 

Suppose that (k1, ... , m) in Ao has Xi > 1. Notice first of all that 

(•'1 '''" 
? 

m--1 
: 0) 

(Ek=l Xk)! Hm-l>j>i>(li - kj + p- i) p(P + m - p) 

H 7 
(Xm-I 

-? +1)! 

Hm-2 
12=(X(m•l_1 

+1+ 1)! 

= (Xl" .. "i m_l). 

Thus, we can assume that .m > 1 as well. Observe also that 

( .i : k-1 : k - 1 : .k+l '" " : km) 

((ZEm=1i k)-l)! Hk#j>i#k(ki-kj+j-i) Hj>k(Xk-kj+j-k-l) 
Hi<k(ki--k+k-i+l) 

(.k+m-k-1)! 
[-1 k(km-l+l)! 

S.lM )kk+mk Xk 
--j +j-k-1 Xi 

--kk 

+k-i+1 
1= 

m- k )k-)j +j-k i<k )i-Xk+k-i 

Therefore, in order to prove equation (3) it suffices to establish the following equation: 

m m k- j+ k 1 -i 
S= (k + m - k) H 

-kJ--J -- Ik+k 
I (4) 

1=I k=l E k+M k Xk - ? kj + j - k X i -- ,k +k - i 
_ k= 1j>k i<k 

This can be obtained by putting zi = Xj + m - i in the following lemma. 

Lemma 2. For any distinct points zl, . Z. , zm in C, 

m(m- 1) 

_•z 

1 
zt 2 Zj -k Zk l=1 k=l j"k( j Zk 

Proof Consider the function 

m 1 
f(z) 

=ZF= 
1 

+- i=1 ( Zi Z) 
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It is clear that 

1 
Res(f, Zk) = Zk J(+ 

jok Zj - Zk 

Let g(z) = f (1/z)/z2. Then 

m 

g(z) = 
z-3 (1 - z - 

_ 
i2 + "higher order terms") 

i=1 

(if Izizl < 1 for i = 1, ..., m). Hence Res(f, oo) = - Res(g, 0) = (Em•1 z) - 
m(m - 1)/2. Since Res(f, oo) = - 

m~_=k 
Res(f, Zk), the result follows. M 

It is not hard to see that equation (2) is the same as equation (1). More precisely, 
for any Ferrers diagram -= (A1, ..., Am) it is easily seen that the product of the hook 
lengths of the boxes in the kth row is equal to 

[1 2...(Ak - k+1) [(k - k+1+ 2)... (Ak - 4k+2 + 1)] 

[(Ak 
- 4k+2 + 3) ... (k - 4k+3 + 2)] 

..[(k - +m -k+1)..-(Ak + m - k)] 

(starting from the right-hand end of the row), which is exactly 

(Ak + m - k)! 

I->k( k - Al - k + 1) 

Thus, we obtain the hook length formula. 

Corollary 3. For a Ferrers diagram A = (A1, ..., Am) with -1 7 -Li = N, the number 
of standard Young tableaux for A is 

N! 

n(i,j)E[h] hij 

(where hij is the hook length of the (i, j)-node). 
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Playing Catch-Up with Iterated Exponentials 
R. L. Devaney, K. Josi , M. Moreno Rocha, P. Seal, 

Y. Shapiro, and A. T. Frumosu 

1. INTRODUCTION. Suppose that we have two animals that make the same num- 
ber of strides per minute, but that one of them takes larger strides than the other. If the 
strides of the smaller animal (the prey) have length a and those of the larger animal 
(the predator) have length b, it is easy to see that a persistent predator will always be 
able to catch up with its prey. Let us assume that the prey starts one step ahead of the 
predator. After n steps the distance between the two is 

nb - (n + 1)a = n(b - a) - a 

and consequently, if n > a/(b - a), the predator will have overtaken its prey. 
Let us now imagine a planet on which creatures move by jumps of increasing length. 

A creature on such a planet is at a distance a from where it started after one jump, 
a distance a2 after two jumps, and a distance a" after n jumps. Let us also assume 
that a > 1 so that creatures move away from their starting points. We can again ask 
whether a small creature that starts one step ahead of a predator can escape from it. We 
assume that the initial step of the predator is of size b > a > 1, so that if b" > an+l 
the smaller creature is in the maw (or the extraterrestrial equivalent) of its predator. A 
simple calculation shows that this happens if the predator is sufficiently persistent to 
make n jumps, where 

n > (loga) log - 
a 

Of course, we can imagine an even stranger planet on which a creature makes an 
initial jump of size a, followed by a jump that moves it at distance aa from its starting 
place, and another that brings it to a distance aaa, and so on. Thus the distance that 
such creatures travel is determined by towers of a. 
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