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Arriving at a conference dinner and sitting down at any free space at a round table, one is
usually confronted with a serious problem: “Should I pick the napkin on the right or on the
left?” If this choice is made at random, some diners will probably have no napkin to choose
from, both being taken by adjacent diners. What is the expected proportion of diners not
getting a napkin?

This is the question posed by John Conway at a lunch at Bell Labs in 2001, as described
in Peter Winkler’s book Mathematical Puzzles: A Connoisseur’s Collection [6]. To be more
precise, we assume that all diners arrive one at a time and find seats at random (that
is, independently and with uniform distribution over the remaining seats). A diner whose
napkin par préférence is taken immediately has a go at the other napkin.

Winkler also gives the asymptotical solution, which is (2−√e)2 ≈ 0.1234. He provides
two proofs, one with a combinatorial flavour and one probabilistic, originally given by Aidan
Sudbury [4]. The latter one is more general in that it assigns the probability p for prefering
the right napkin and q = 1− p for prefering the left, arriving at (1− peq)(1− qep)/pq.

A more thorough analysis has recently been given by Claesson and Petersen [1], who
use a system of equations containing seven generating functions to compute the generating
function of the napkinless diners. This allows them to compute both the expectation and
the variance of the number of napkinless diners as a function of the number n of diners, as
well as the corresponding figures for the number of diners who get a napkin, though not
the one they wanted. These computations have been made in the general p, q setting.

This increase in information is unfortunately also met by an increase in complexity of
the solution. Defining these generating functions and discovering their relations, as well
as introducing objects like ordered bipartitions, does not yield a one-line proof or even a
one-page proof. However, the expected proportion of napkinless diners is very similar to
its asymptotic, indicating that it can be solved in a simpler way, following Winkler and
Sudbury.

This turns out to be quite true. We take the view of a freshman, knowing nothing of
generating functions and other sophisticated methods, though being familiar with permu-
tations and binomial cooefficients. Using only elementary facts about these objects, we
compute the expected number of napkinless diners for table size n and proportions p and q
of diners preferring the right and left napkin, respectively. The approach is similar to that
of Winkler [6] in his computation of the corresponding asymptotic, but more to the point.

We also use the same approach to give the first trivial computations of the expected
number of frustrated diners. In addition, we solve a number of related problems, including
that of the French diners and one concerning diners who use more than one napkin.
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Figure 1: A part of a (round) table with diners and napkins. Solid sloped lines indicate
that a diner takes a napkin and dotted lines that a diner attempts at, and fails in, taking
a napkin. The numbers below indicate the order in which the diners arrive. The diners’
smiles indicate whether they are happy, frustrated, or napkinless.

1 The freshman’s approach

It is instructive to take a pictorial view of the setting, following Claesson and Petersen (see
Figure 1). A solid line between a diner and one of the adjacent napkins indicates that the
diner has taken this napkin, and a dotted line indicates that the diner has failed in taking
that napkin. Thus, diners with a solid line only are happy, diners with both a solid and a
dotted line are frustrated, and diners with two dotted lines do not get a napkin.

We will first compute the probability that diner k, that is the kth diner to arrive, does
not get a napkin. This can only happen if both the right and left napkins of diner k have
been taken. Thus, on each side of diner k we have a number of diners arriving prior to diner
k. To the right of k, there must be a closest diner having chosen the left napkin, and the
diners in between have all tried to pick the right napkin, but failed and taken the left one
instead. On the left side, the situation is mirrored. Such a segment is called a contraction
(see Figure 2).

f f f f f f f f f

Figure 2: If a diner does not manage to take a napkin, then both adjacent napkins have
already been taken. There is a closest happy diner on the left and on the right, and all
diners between the closest happy diner and the napkinless diner must be frustrated. The
segment from the left to the right closest happy diner is called a contraction.

Concentrating on a particular diner k, we may consider her position and choice of napkin
to be set in advance. All other diners are positioned relative to her. We assume that the
size of the contraction (number of diners) around diner k is m + 1 and that the number of
diners on the left side in the contraction is j.

In total, the diners can position themselves in (n−1)! ways. However, to get a contraction
the diners within the contraction must arrive in a certain order. The diners on the left side
must arrive starting with the leftmost one, proceeding inwards, and similarly on the right
side. Thus, the number of ways to position the diners to get a contraction is the number
of possible ways to position those outside the contraction, (n−m− 1)!, times the number
of ways to choose diners for the contraction, which is

(
k−1
m

)(
m
j

)
. Also, while the diners

outside the contraction may prefer any napkin, each diner within the contraction must
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prefer a specific napkin according to the definition of the contraction. For each diner in
the contraction we therefore must multiply by the probability 1/2 for the correct napkin
preference.

We let Xnk equal 1 if among n diners, the kth diner does not get a napkin, and 0
otherwise, and find that the probability of diner k not getting a napkin is

P(Xnk = 1) =
k−1∑

m=2

m−1∑

j=1

(
k−1
m

)(
m
j

)
(n−m− 1)!

(n− 1)!

(
1
2

)m

.

Generalising to the probabilities p and q = 1− p for prefering the right and left napkin,
we get

P(Xnk = 1) =
k−1∑

m=2

m−1∑

j=1

(
k − 1

m

)(
m

j

)
(n−m− 1)!

(n− 1)!
qjpm−j

=
k−1∑

m=2

(
k − 1

m

)
(n−m− 1)!

(n− 1)!
pm

m−1∑

j=1

(
m

j

)(
q

p

)j

=
k−1∑

m=2

(
k − 1

m

)
(n−m− 1)!

(n− 1)!
pm

((
1 +

q

p

)m

− 1−
(

q

p

)m)

=
k−1∑

m=2

(
k − 1

m

)
(n−m− 1)!

(n− 1)!
(1− (pm + qm)) .

Note that we use nothing more than the binomial theorem and the fact that p + q = 1 to
obtain this formula. We note that the probability that the last diner does not get a napkin
converges to such a low value as

n−1∑

m=2

(
n− 1

m

)
(n−m− 1)!

(n− 1)!
(1− (pm + qm))

=
n−1∑

m=2

1− (pm + qm)
m!

= expn−1(1)− 2− (
expn−1(p)− 1− p + expn−1(q)− 1− q

)

= (1− expn−1(p))(1− expn−1(q)).

Above, expn(x) refers to the truncated exponential function
∑n

k=0 xk/k!. In particular, for
p = q = 1/2 we get asymptotically (e1/2 − 1)2 ≈ 0.4208.

Summing over all diners, we compute the expected number of napkinless diners, Xn =
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∑
Xnk, as

E(Xn) =
n∑

k=1

k−1∑

m=2

(
k − 1

m

)
(n−m− 1)!

(n− 1)!
(1− (pm + qm))

=
n−1∑

m=2

(n−m− 1)!
(n− 1)!

(1− (pm + qm))
n∑

k=m+1

(
k − 1

m

)

=
n−1∑

m=2

(n−m− 1)!
(n− 1)!

(1− (pm + qm))
(

n

m + 1

)

= n

n−1∑

m=2

1− (pm + qm)
(m + 1)!

= n

((
expn(1)− 5

2

)
− 1

p

(
expn(p)− 1− p− p2

2

)
− 1

q

(
expn(q)− 1− q − q2

2

))

= n
(1− pexpn(q)) (1− qexpn(p))

pq
.

The result agrees with the pq asymptotics given by Sudbury [4].

2 Generalisations and related problems

2.1 Frustrated diners

The freshman’s approach lends itself to many similar problems. For instance, Claesson and
Petersen considered the number of frustrated diners as well, those being the ones that got
a napkin, although not the one they wanted. Let the indicative function of the frustrated
diners be Ynk. By considering right and left halves of contractions, we find the probability
that diner k does not get her favourite napkin (and possibly none at all) to be

P(Xnk + Ynk = 1) =
k−1∑

m=1

(
k − 1

m

)
(n−m− 1)!

(n− 1)!
(qpm + pqm).

Summing this over all k gives, with Yn =
∑

Ynk,

E(Xn + Yn) = n
n−1∑

m=1

qpm + pqm

(m + 1)!

= n

(
q

p
(expn(p)− 1− p) +

p

q
(expn(q)− 1− q)

)
.

While it seems hard to make a really nice expression of this, we can count the diners who
do not get a napkin at all twice, to obtain the number of failed attempts to grab a napkin.
We get

E(Xn + Yn) + E(Xn) = n(1− expn(p))(1− expn(q)).
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Of course, if we instead remove the number of diners who do not get a napkin, we obtain
the number of frustrated diners:

E(Yn) =
n

pq
((p + pexpn(q))(q + qexpn(p))− 2(1− pexpn(q))(1− qexpn(p))) .

This confirms the asymptotic for the number of frustrated diners for p = q = 1/2 obtained
in [1].

2.2 Happy diners

It would be interesting to compute the probability that exactly k diners are unable to get a
napkin. Unfortunately, this seems quite hard. However, as shown by Claesson and Peterson,
there is a special case that presents few obstacles, namely k = 0. What is the probability
that all diners get a napkin?

Assume, without loss of generality, that the first diner chooses the right napkin, and
number the seats starting with the seat to the right of the first diner, progressing to the
right. Let πi equal k− 1 if the kth diner sits in seat number i. Then π is a permutation on
{1, . . . , n− 1}. Assuming that all diners have a napkin, they must also have taken the one
on their right side. Diners arriving after their left neighbour will be forced to take the right
napkin regardles of which they prefer, but diners arriving before their left neighbour must
prefer the right napkin. Arriving before the left neighbour corresponds to a descent in the
permutation π. The number of permutations of n− 1 elements with k− 1 descents is given
by the Eulerian numbers A(n − 1, k) and the sums An(x) =

∑
A(n, k)xk are the Eulerian

polynomials (see for instance [3]).
There are A(n − 1, k)/(n − 1)! permutations with k − 1 descents, and the probability

that each diner following a descent prefers the right napkin is (1/2)k−1. We thus want to
compute

n−1∑

k=1

A(n− 1, k)
(n− 1)!

(
1
2

)k−1

=
2An−1(1/2)

(n− 1)!
.

Plugging u = 2−1 into ∑

k≥0

knuk =
An(u)

(1− u)n+1

(taken from [2]), we arrive at 2n+1An(1/2) =
∑

kn/2k with asymptotic n!/ logn+1(2) [5].
Thus, the probability becomes

∑
k≥0

kn−1

2k

(n− 1)!2n−1
≈ 2

(2 log(2))n
.

2.3 French diners

According to Claesson and Petersen, French combinatorialist Sylvie Corteel remarked that
a French diner would rather refuse to eat than take the undesired napkin. This leads
them to mention the problem of how the number of napkinless diners changes with the
proportion of French diners, who do not take a napkin unless it is the preferred one. Using

5



the techniques above, this is not hard to compute. While it can be done for any probability
p of right-oriented diners, we restrict ourselves to p = 1/2 for clarity.

Let f be the probability that a diner is French. If diner k is not French, then both
adjacent napkins must be taken for the diner to be without. Also, only the two outermost
diners in the contraction can be French. Thus, the probability that k is not French and
without napkin is

(1− f)
k−1∑

m=2

m−1∑

j=1

(
k − 1

m

)(
m

j

)
(n−m− 1)!

(n− 1)!

(
1
2

)m

(1− f)m−2,

which sums over k to

n

(1− f)2

((
expn

(
1− f

2

)
− 2

)2

− f

)
.

On the other hand, French diners need only to be frustrated to be without a napkin.
The probability that this happens is

f
k−1∑

m=1

(
k − 1

m

)
(n−m− 1)!

(n− 1)!

(
1
2

)m

(1− f)m−1,

and summing over k gives

nf

(1− f)2

(
2expn

(
1− f

2

)
− 3 + f

)
.

Adding these two alternatives gives the expected proportion of napkinless diners for any
f , which becomes 

1−
expn

(
1−f

2

)
− 1

1− f




2

.

If we let f increase from 0 to 1, this is an almost linear function starting at 0.1234 . . . and
ending at 1/4.

2.4 Dinner conversations on mathematics

In an informal survey conducted during the preparation of [1] on which napkin they pre-
ferred, one person answered “I would use the napkin on my left to wipe my mouth, and
the one on my right to write on.” To be able to discuss mathematics during the meal, the
diner takes both napkins, if they are free.

Imagine that the dinner party consists of four kinds of diners: those who prefer the left
napkin, those who prefer the right, those who try to take both napkins, and those who use
the table cloth for wiping their mouths and writing on, not taking any napkin even if it
is available. This extends the possible levels of frustration well beyond what we can keep
record of, so let’s concentrate on the napkins instead of the diners. What proportion of
napkins is expected to be unused? Let pr, p`, pb, and pn denote the probabilities that the
diner tries to take the right, the left, both, and none of the napkins, respectively.
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We will first compute the probability that diner k tries to take the napkin to her left,
and then reduce this number by the probability that she fails. The kth diner tries to take
the left napkin either by choice or being forced to by her right neighbours. In any case,
there is a half contraction in which the rightmost diner prefers the left or both napkins, and
in between we have some number of diners who are forced to take the left napkin, though
preferring the right. Thus, the probability that diner k attempts for the left napkin is

k−1∑

m=0

(
k − 1

m

)
(n−m− 1)!

(n− 1)!
pm

r (p` + pb),

which sums over k to
n

p` + pb

pr
(expn(pr)− 1) . (1)

On the other hand, the probability that diner k attempts for the left napkin and fails is, by
a similar argument with full contraction,

k−1∑

m=1

m∑

j=1

(
k − 1

m

)(
m

j

)
(n−m− 1)!

(n− 1)!
pm−j

r pj−1
` (pr + pb)(p` + pb)

=
(pr + pb)(p` + pb)

p`

k−1∑

m=1

(
k − 1

m

)
(n−m− 1)!

(n− 1)!
((pr + p`)m − pm

r ) ,

which sums over k to

n
(pr + pb)(p` + pb)

prp`(pr + p`)
(prexpn(pr + p`)− (pr + p`)expn(pr) + p`) . (2)

Subtracting (2) from (1) gives the expected number of napkins taken from the right. We
add to this the corresponding expectation of napkins taken from the left and remove it all
from n to obtain the expected number of remaining napkins. It is

n−
(

n
p` + pb

pr
(expn(pr)− 1) + n

pr + pb

p`
(expn(p`)− 1)

−n
(pr + pb)(p` + pb)

prp`
(expn(pr + p`)− expn(pr)− expn(p`) + 1)

)

= n

(
1− p` + pb

pr
(expn(pr)− 1)

)(
1− pr + pb

p`
(expn(p`)− 1)

)
.

The special case pr = p` = pb = pn = 1/4 thus gives the proportion (3−2e1/4)2 ≈ 0.1866
of unused napkins, which is about 50 percent higher than 0.1234 from the original setting.
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