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THE SHI ARRANGEMENT AND THE ISH ARRANGEMENT

DREW ARMSTRONG AND BRENDON RHOADES

Abstract. This paper is about two arrangements of hyperplanes. The first
— the Shi arrangement — was introduced by Jian-Yi Shi (1986) to describe the
Kazhdan-Lusztig cells in the affine Weyl group of type A. The second — the
Ish arrangement — was recently defined by the first author, who used the two
arrangements together to give a new interpretation of the q, t-Catalan num-
bers of Garsia and Haiman. In the present paper we will define a mysterious
“combinatorial symmetry” between the two arrangements and show that this
symmetry preserves a great deal of information. For example, the Shi and Ish
arrangements share the same characteristic polynomial, the same numbers of
regions, bounded regions, dominant regions, regions with c “ceilings” and d

“degrees of freedom”, etc. Moreover, all of these results hold in the greater
generality of “deleted” Shi and Ish arrangements corresponding to an arbitrary
subgraph of the complete graph. Our proofs are based on nice combinatorial
labelings of Shi and Ish regions and a new set partition-valued statistic on
these regions.

1. Introduction

A hyperplane arrangement is a finite collection of affine hyperplanes in Euclidean
space. Some of the nicest arrangements come from the reflecting hyperplanes of
Coxeter groups. In particular, the Coxeter arrangement of type A (also known as
the braid arrangement) is the arrangement in R

n defined by

Cox(n) := {xi − xj = 0 : 1 ≤ i < j ≤ n}.
Here {x1, . . . , xn} are the standard coordinate functions on R

n.
Postnikov and Stanley [9] introduced the idea of a deformation of the Coxeter

arrangement — this is an affine arrangement each of whose hyperplanes is parallel
to some hyperplane of the Coxeter arrangement. In the present paper we will
study two specific deformations of the Coxeter arrangement and we will observe a
deep similarity between them. The first is the Shi arrangement which was one of
Postnikov and Stanley’s motivating examples:

Shi(n) := Cox(n) ∪ {xi − xj = 1 : 1 ≤ i < j ≤ n}.
This arrangement was defined by Jian-Yi Shi [11, Chapter 7] in the study of the
Kazhdan-Lusztig cellular structure of the affine Weyl group of type A. The second
is the Ish arrangement, recently defined by the first author [1]:

Ish(n) := Cox(n) ∪ {x1 − xj = i : 1 ≤ i < j ≤ n}.
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1510 DREW ARMSTRONG AND BRENDON RHOADES

Figure 1.1. The arrangements Shi(3) (left) and Ish(3) (right)

He used the Shi and Ish arrangements to give a new description of the q, t-Catalan
numbers of Garsia and Haiman in terms of the affine Weyl group of type A. In
particular, the Shi and Ish arrangements define two distance enumerators on mini-
mal alcoves in the dominant Shi regions; their joint distribution is the q, t-Catalan
number. (For pictures see [1].) Figure 1.1 displays the arrangements Shi(3) and
Ish(3). (Note that the normals to the hyperplanes of either Shi(n) or Ish(n) span
the hyperplane x1+x2+ · · ·+xn = 0. Hence we will always draw their restrictions
to this space.)

The heart of this paper is the following correspondence between Shi and Ish
hyperplanes. The correspondence is natural to state, but we find it geometrically
mysterious. We will call this a “combinatorial symmetry”:

xi − xj = 1 ←→ x1 − xj = i for 1 ≤ i < j ≤ n .

This symmetry allows us to define deleted versions of the Shi and Ish arrangements.

Let
(
[n]
2

)
denote the set of pairs ij satisfying 1 ≤ i < j ≤ n and consider a simple

loopless graph G ⊆
(
[n]
2

)
. The deleted Shi and Ish arrangements are defined as follows:

Shi(G) := Cox(n) ∪ {xi − xj = 1 : ij ∈ G},
Ish(G) := Cox(n) ∪ {x1 − xj = i : ij ∈ G}.

The arrangement Shi(G) was first considered by Athanasiadis [3]. Note that Shi(G)
(resp. Ish(G)) interpolates between the Coxeter arrangement and the Shi (resp.

Ish) arrangement. That is, if ∅ ∈
(
[n]
2

)
is the “empty” graph and Kn =

(
[n]
2

)
is the

“complete” graph, we have

Shi(∅) = Ish(∅) = Cox(n), Shi(Kn) = Shi(n) and Ish(Kn) = Ish(n).

Figure 1.2 displays the arrangements Shi(G) and Ish(G) corresponding to the “chain”

G = {12, 23} ⊆
(
[3]
2

)
.

In order to state our main results right away we need a few definitions.
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THE SHI ARRANGEMENT AND THE ISH ARRANGEMENT 1511

Figure 1.2. The arrangements Shi(G) (left) and Ish(G) (right)

corresponding to the “chain” G = {12, 23} ⊆
(
[3]
2

)

Let A be either Shi(G) or Ish(G). The connected components of Rn −
⋃

H∈A H
are called regions. We say that a region is dominant if it lies within the dominant
cone, defined by the coordinate inequalities

x1 > x2 > · · · > xn.

The topological closure R̄ of a region R is decomposed by the arrangement A into
faces of various dimensions. We say that the hyperplane H is a wall of R if it is the
affine span of a codimension-1 face of R. The wall H is called a ceiling if H does
not contain the origin and if the region R and the origin lie in the same half-space
of H. Since every region R is convex, it determines a recession cone (which is closed
under nonnegative linear combinations):

Rec(R) := {v ∈ R
n : v +R ⊆ R}.

Note that the region R is bounded if and only if Rec(R) = 0. We call the dimension
of Rec(R) the number of degrees of freedom of R.

Finally, let L(A) denote the collection of nonempty intersections of hyperplanes
from A, partially ordered by the reverse-inclusion of subspaces:

L(A) :=

{ ⋂
H∈S

H : S ⊆ A
}
.

This poset has the structure of a geometric semilattice (see [14]) with a unique
minimum element Rn (corresponding to the empty intersection). The characteristic
polynomial (or chromatic polynomial) χA(p) ∈ Z[p] of the arrangement A is defined
by

χA(p) =
∑

X∈L(A)

μ(Rn, X)pdim(X),

where μ : L(A)× L(A) → Z is the Möbius function of the poset L(A) (see [12]).

Main Theorem. Let G ⊆
(
[n]
2

)
be a simple loopless graph on n vertices, and let c

and d be nonnegative integers. The deleted Shi and Ish arrangements Shi(G) and
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1512 DREW ARMSTRONG AND BRENDON RHOADES

Ish(G) share the following properties in common:

(1) the characteristic polynomial;
(2) the number of dominant regions with c ceilings;
(3) the number of regions with c ceilings and d degrees of freedom.

Proof. Parts (1), (2), (3) are Theorems 3.2, 4.5, and 5.1, respectively. �

For example, here are the joint distributions of ceilings (c) and degrees of freedom
(d) for the arrangements in Figures 1.1 and 1.2, respectively:

d

c

1 2 3
0 6
1 3 6
2 1

d

c

1 2 3
0 6
1 2 4
2 1

We find it surprising that the symmetry xi − xj = 1 ↔ x1 − xj = i preserves so
much information. However, there are important properties that it does not pre-
serve. For example, one may observe from Figures 1.1 and 1.2 that the intersection
poset is not preserved. One can also show that the Tutte polynomials of Shi(3)
and Ish(3) differ, and that the Orlik-Solomon algebras of Shi(G) and Ish(G) are
not graded-isomorphic for G = {12, 23} (even though the equality of characteristic
polynomials implies that these algebras have the same Hilbert series). Is there a
unifying concept that could simplify the statement of the Main Theorem?

The paper is structured as follows.
In Section 2 we establish some language for set partitions. We define G-partitions

— which for the complete graph are just partitions of [n] = {1, 2, . . . , n} — and
discuss various kinds: connected and nonnesting. We define the (a,b) endpoint
notation for partitions which seems to be the correct language for comparing Shi
and Ish arrangements.

In Section 3 we show that Shi(G) and Ish(G) have the same characteristic poly-
nomial, which has a formula involving G-Stirling numbers. This proves part (1) of
the Main Theorem. Our tool is the finite field method of Crapo and Rota [5]. By
a standard result of Zaslavsky this implies that Shi(G) and Ish(G) share the same
number of total regions and relatively bounded regions (regions with one degree of
freedom).

In Section 4 we modify a labeling of the regions of Shi(G) due to Athanasiadis
and Linusson [2], and we call the result Shi ceiling diagrams. Similarly, we define
Ish ceiling diagrams for the regions of Ish(G). We give a bijective proof of part (2)
of the Main Theorem by observing that dominant regions of Shi(G) and Ish(G)
correspond to order ideals in isomorphic posets.

In Section 5 we define the ceiling partition for a region of Shi(G) or Ish(G). This
is a (possibly nesting) G-partition that encodes the ceilings of the region. Given a
G-partition π with k blocks and an integer 1 ≤ d ≤ k, we show that the number of
regions of either Shi(G) or Ish(G) with ceiling partition π and d degrees of freedom
is equal to

d(n− d− 1)!(k − 1)!

(n− k − 1)!(k − d)!
,

which proves part (3) of the Main Theorem. This formula is remarkable, and it is
new even for the Shi arrangement. The proof of the formula for Ish regions is direct,
whereas the proof for Shi regions uses a new formula due to the second author (see
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THE SHI ARRANGEMENT AND THE ISH ARRANGEMENT 1513

Figure 2.1. A partition of [8] with type (1, 0, 1, 1, 0, 0, 0, 0)

[10] or Lemma 2.2) which counts nonnesting partitions with a fixed number of
connected components and fixed block size multiplicities. This suggests an open
problem: Find a bijection between Shi regions and Ish regions with ceiling partition
π and d degrees of freedom. This bijection cannot preserve the property of being
dominant, since Shi(G) and Ish(G) do not share the same number of dominant
regions with d degrees of freedom.

We end with an observation:

The Ish arrangement is something of a “toy model” for the Shi
arrangement (and other Catalan objects). That is, for any property
P that Shi(G) and Ish(G) share, the proof that Ish(G) satisfies P is
easier than the proof that Shi(G) satisfies P .

2. Set partitions

All of the formulas in this paper are phrased in terms of set partitions. In this
section we will give some background on these and establish notation. In particular,

for each graph G ⊆
(
[n]
2

)
we will define G-partitions of the set [n] = {1, 2, . . . , n}. In

the case of the complete graph this corresponds to the usual notion of partitions.

2.1. The endpoint notation. We say that π = {B1, B2, . . . , Bk} is a partition of
[n] into k blocks if the following disjoint union holds:

[n] = B1 
B2 
 · · · 
Bk.

The type of the partition π is the sequence (r1, r2, . . . , rn) where ri is the number of
blocks of π with size i. We draw the arc diagram of π as follows: Place the numbers
1, 2, . . . , n on a line and draw an arc between each pair i < j such that:

• i and j are in the same block of π, and
• there is no i < � < j such that i, �, j are in the same block of π.

Figure 2.1 displays the arc diagram for the partition {{1, 2, 5, 6}, {3, 7, 8}, {4}},
which has type (1, 0, 1, 1, 0, 0, 0, 0).

In this paper we will use a special notation for partitions, based on the arc
diagram. First note that a partition π has n − k blocks if and only if its diagram
has k arcs. This is because each new arc reduces the number of blocks by one.
Now suppose that the arcs of π are a1b1, a2b2, . . . , akbk, with the left endpoints in
increasing order: a1 < a2 < · · · < ak. We will associate π with its pair (a,b) of
endpoint vectors:

a = a1a2 . . . ak and =
¯
b1b2 . . . bk.

We call (a,b) the endpoint notation for π. For example, the endpoint notation for
the partition in Figure 2.1 is (12357, 25768). It is straightforward to check that
partitions of [n] are in bijection with pairs of vectors (a,b) such that:

• a and b have the same length (called the length of the pair (a,b)),
• ai < bi for all i,
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1514 DREW ARMSTRONG AND BRENDON RHOADES

• the entries of a are increasing, and
• the entries of b are distinct.

In particular, the empty pair (∅, ∅) corresponds to the partition {{1}, {2}, . . . , {n}}
and the longest pair (12 . . . (n− 1), 23 . . . n) corresponds to the partition {[n]}. We
will see that the endpoint notation is the best language for comparing Shi and Ish
arrangements.

2.2. Nonnesting partitions. A partition π of [n] is called nonnesting if it does
not contain arcs ij and k� such that i < k < � < j — that is, no arc of π “nests”
inside another. The partition in Figure 2.1 is not nonnesting (it is nesting) because
the arc 56 nests inside the arc 37. The number of nonnesting partitions of [n] is
famously given by the Catalan number 1

n+1

(
2n
n

)
.

The property of nonnesting agrees well with the endpoint notation for partitions.
That is, a partition (a,b) is nonnesting if and only if its right endpoint vector b
is increasing. In fact, the number of pairs of nesting arcs in (a,b) is equal to the
number of pairs bi > bj such that i < j.

2.3. G-partitions and G-Stirling numbers. Now we define a version of set par-

titions for any graph G ⊆
(
[n]
2

)
:

We say that a partition π of [n] is a G-partition if all of its arcs are
contained in the graph G. The G-Stirling number Stir(G, k) is the
number of G-partitions with k blocks.

In particular, when G is the complete graph Kn =
(
[n
2

)
the G-partitions are un-

restricted partitions of [n] and the G-Stirling numbers are the classical Stirling
numbers (of the second kind).

2.4. Connectivity. Finally, we mention an auxiliary (nontrivial) result which we
need for the proof of the Main Theorem. For i ≤ j we say that a partition π of the
set {i, i+1, . . . , j} is connected if there does not exist i ≤ k < j such that π refines
the partition

{{i, i+ 1, . . . , k}, {k + 1, . . . , j − 1, j}}.
Equivalently, π is connected if its arc diagram has no holes when seen from space.
The partition in Figure 2.1 is connected. Moreover, a partition π of [n] has d
connected components if there exist numbers 1 < i1 < · · · < id−1 < n such that π
refines the partition

{{1, 2, . . . , i1 − 1}, {i1, i1 + 1, . . . , i2 − 1}, . . . , {id−1, id−1 + 1, . . . , n}}

and if its restriction to each block of this partition is connected. Equivalently, the
arc diagram of a partition with d connected components has d− 1 holes when seen
from space. For example, the partition {{1, 2}, {3, 5, 7}, {4, 6}, {8}} has 3 connected
components.

The second author has recently established an enumerative formula for nonnest-
ing partitions (and other Catalan objects) that takes into account the type of the
partition and its number of connected components. The prototype for this formula
is the following theorem of Kreweras [7, Theorem 4]. Kreweras stated his formula in
terms of noncrossing partitions; however, type-preserving bijections between non-
crossing and nonnesting partitions have been observed by several authors.
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THE SHI ARRANGEMENT AND THE ISH ARRANGEMENT 1515

Lemma 2.1. Let n > 0 and suppose that the sequence (r1, . . . , rn) of nonnegative
integers satisfies

∑
i iri = n and

∑
i ri = k. The number of nonnesting partitions

of [n] with type (r1, . . . , rn) is

n!

(n− k + 1)!r1!r2! · · · rn!
.

We will need the following formula of the second author [10] in our proof of part
(3) of the Main Theorem. The proof of this result is combinatorial and relies on
the enumeration of words in certain monoids.

Lemma 2.2 ([10, Theorem 2.3, Part 2]). Let n > 0 and suppose that the sequence
(r1, . . . , rn) of nonnegative integers satisfies

∑
i iri = n and

∑
i ri = k. Let k ≥ d

and assume that (r1, . . . , rn) �= (n, 0, . . . , 0). The number of nonnesting partitions
of [n] with type (r1, . . . , rn) and d connected components is

d(n− d− 1)!(k − 1)!

(n− k − 1)!(k − d)!r1!r2! · · · rn!
.

When k < d, it is clear that there are no partitions of [n] of type (r1, . . . , rn) with∑
i ri = k and d connected components. There is a unique (nonnesting) partition

of [n] with type (n, 0, . . . , 0), and it has n connected components.
We remark that the product formula in Lemma 2.2 was predicted from the

formula (5.1) for Ish arrangements, not by studying nonnesting partitions directly.
This is one case in which the Ish arrangement acted as a “toy model” for other
Catalan objects.

3. Characteristic polynomials

In this section we explicitly compute the characteristic polynomials of Shi(G)
and Ish(G) and observe that they are equal. The formula is expressed in terms of
G-Stirling numbers Stir(G, k). Our tools are the finite field method of Crapo and
Rota and the principle of inclusion-exclusion. Zaslavsky’s theorem then implies
that Shi(G) and Ish(G) have the same number of regions and the same number of
relatively bounded regions (regions with one degree of freedom).

3.1. The method. Let A be a finite hyperplane arrangement in R
n and suppose

that the defining equations for hyperplanes in A have coefficients in Z. Then the
finite field method of Crapo and Rota [5] is a useful way to compute the char-
acteristic polynomial of A without having to know its intersection poset. Let
p ∈ Z be prime and consider a hyperplane H ⊆ R

n with fixed defining equa-
tion a1x1 + · · · + anxn = b, where ai, b ∈ Z. Then we define the following subset
Hp of the finite vector space F

n
p by reducing the coefficients of H modulo p:

Hp := {(x1, x2, . . . , xn) ∈ F
n
p : a1x1 + · · ·+ anxn = b}.

Observe that Hp may not be a hyperplane in F
n
p when p is small and that Hp in

general depends on the defining equation chosen. However, if p is large enough,
then each Hp is a hyperplane in F

n
p and the characteristic polynomial of A has a

nice relationship to the reduced hyperplane arrangement Ap := {Hp : H ∈ A} in F
n
p .

Theorem 3.1 ([5]). Let p ∈ Z be a large prime, and let A be a finite collection
of hyperplanes in R

n whose hyperplanes have defining equations with coefficients in
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1516 DREW ARMSTRONG AND BRENDON RHOADES

Z. Then the characteristic polynomial of A satisfies

χA(p) = #

(
F
n
p −

⋃
H∈A

Hp

)
.

That is, χA(p) counts the number of points in the complement of the reduced ar-
rangement Ap in the finite vector space F

n
p .

3.2. The calculation. Now we use the finite field method to compute the charac-
teristic polynomials of Shi(G) and Ish(G). We observe that they are equal.

Theorem 3.2. Let G ⊆
(
[n]
2

)
be a graph on n vertices. The characteristic polyno-

mials of the deleted Shi and Ish arrangement are given by

χShi(G)(p) = χIsh(G)(p) = p
n−1∑
k=0

(−1)kStir(G,n− k)
(p− k − 1)!

(p− n)!
.

Proof. Let p ∈ Z be a large prime. We will show that the reduced complements
F
n
p − Shi(G)p and F

n
p − Ish(G)p (forgive the abuse of notation) contain the same

number of points, counted by the above formula.
To do this, we identify {0, 1, . . . , p − 1} = Fp with the vertices of a regular

p-gon, ordered clockwise. (That is, i + 1 is just clockwise of i.) Then a vector
v = (v1, . . . , vn) ∈ F

n
p is a labeling of the vertices: If vi = j, then we place the label

vi on the vertex j. Note that v ∈ F
n
p is in the complement of the (reduced) Coxeter

arrangement Cox(n)p precisely when vi − vj �= 0 for all 1 ≤ i < j ≤ n. That is, the
points of Fn

p − Cox(n)p correspond to injective labelings {v1, . . . , vn} ↪→ Fp. The
complements of Shi(G)p and Ish(G)p are both contained in F

n
p − Cox(n)p, so we

must count certain kinds of injective labelings.
First we deal with Shi(G)p. For any set of edges S ⊆ G let f(S) denote the

number of vectors v ∈ F
n
p − Shi(G)p such that vi − vj = 1 for all edges ij ∈ S (this

notation implies i < j). By the principle of inclusion-exclusion (see for example
[12, Chapter 2]) we observe that the number of points in F

n
p − Shi(G)p is equal to

(3.1)
∑
S⊆G

(−1)|S|f(S).

Now suppose that S contains edges ij and i� with the same left endpoint. The
conditions vi− vj = 1 and vi− v� = 1 imply that vj = v�, which cannot be satisfied
on F

n
p − Cox(n)p; hence f(S) = 0. Similarly f(S) = 0 whenever S contains two

edges with the same right endpoint. That is, the sets S that contribute to the sum
(3.1) are precisely the arc sets of G-partitions.

Let S ⊆ G correspond to a G-partition with n− k blocks (that is, |S| = k). To
compute f(S) note that the conditions vi − vj = 1 for all ij ∈ S imply that the
p-gon Fp gets labeled by n− k − 1 (given) contiguous strings of labels with spaces
between. There are (n − k − 1)! ways to cyclically permute the strings, there are(
p−k−1
n−k−1

)
ways to place p−n empty spaces between the strings, and there are p ways

to choose the “origin” (the location of 0). Hence,

(3.2) f(S) =
p (p− k − 1)!

(p− n)!
.

Combining (3.1) and (3.2) with the finite field method gives the desired formula.
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THE SHI ARRANGEMENT AND THE ISH ARRANGEMENT 1517

We use a parallel argument to deal with Ish(G)p. For any set of edges S ⊆ G let
g(S) be the number of vectors v ∈ F

n
p − Ish(G)p such that v1− vj = i for all ij ∈ S.

As above, the points of Fp − Ish(G)p are counted by

(3.3)
∑
S⊆G

(−1)|S|g(S),

and one can check that g(S) = 0 unless S is the arc set of a G-partition. We let
S correspond to a G-partition with n − k blocks (that is, |S| = k) and compute
g(S) as follows. First choose v1 in p ways. Then for each ij ∈ S the condition
v1 − vj = i uniquely determines the value of vj . The remaining n − k − 1 labels
must be placed injectively in the remaining p − k − 1 positions, and there are
(p − k − 1)(p − k − 2) · · · (p − n + 1) ways to do this. Thus we get the desired
formula:

�(3.4) g(S) =
p (p− k − 1)!

(p− n)!
.

Notice that the counting argument for computing χIsh(G)(p) was more straightfor-
ward than the argument for χShi(G)(p). This again agrees with our observation that
Ish is a toy model for Shi. It is somewhat surprising that the two inclusion-exclusion
arguments result in the same expression. It may be interesting to find a direct bi-
jection between the points of the complements Fn

p − Shi(G)p and F
n
p − Ish(G)p.

3.3. Remarks. A simplified version of the above argument shows that the char-
acteristic polynomials of Shi(n) and Ish(n) (the case of the complete graph) are
both equal to p (p − n)n−1. This result was obtained earlier by Headley [6] and
Athanasiadis [3] (for the Shi arrangement) and by the first author [1, Theorem 1]
(for the Ish arrangement). Moreover, Athanasiadis described a special family of
graphs G for which the characteristic polynomial of Shi(G) splits. His result [4,
Theorem 2.2] together with Theorem 3.2 implies the following.

Corollary 3.3. Suppose the graph G ⊆
(
[n]
2

)
has the following property: If i < j < k

and ij ∈ G, then ik ∈ G. Then we have

χShi(G)(p) = χIsh(G)(p) = p
n−1∏
i=1

(p− di − i),

where di := #{j : ij ∈ G} is the outdegree of vertex i in G.

In the same paper, Athanasiadis showed that the arrangements Shi(G) of the
corollary are free in the sense of Terao [13] (see also [8]). This is an open problem
for the corresponding Ish arrangements Ish(G).

We remark that the characteristic polynomial of an arrangement allows us to
count certain kinds of regions. Some notation: Let A be a finite collection of
hyperplanes in R

n and suppose that the normals to the hyperplanes span a space
V ⊆ R

n of dimension r. This r is called the rank of the arrangement. If r < n,
then the arrangement A has no bounded regions. In this case we say that a region
of A is relatively bounded if its intersection with V is bounded. The following is a
classic theorem of Zaslavsky.

Theorem 3.4 ([15]). Let A be a hyperplane arrangement in R
n with rank r. Then:

• The number of regions of A is (−1)nχA(−1).
• The number of relatively bounded regions of A is (−1)rχA(1).
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1518 DREW ARMSTRONG AND BRENDON RHOADES

Corollary 3.5. The arrangements Shi(G) and Ish(G) have the same number of
regions and the same number of relatively bounded regions.

Observe that the normals to either Shi(G) or Ish(G) span the hyperplane x1 +
x2 + · · · + xn = 0. Hence each of these arrangements has rank n − 1. It follows
that neither arrangement has bounded regions and its relatively bounded regions
have one degree of freedom. In the case of the complete graph, we find that the
arrangements Shi(n) and Ish(n) both have (n+1)n−1 regions and (n−1)n−1 regions
with one degree of freedom.

The fact that the Shi arrangement Shi(n) has (n+1)n−1 regions was first proved
by Jian-Yi Shi (see [11]). This beautiful result has motivated more than a few
research papers since 1985 (including the present one).

4. Labeling the regions

Fix a graph G ⊆
(
[n]
2

)
. In this section we devise combinatorial labels for the

regions of the deleted arrangements Shi(G) and Ish(G); we call these labels Shi
ceiling diagrams and Ish ceiling diagrams, respectively. (Something like “Shi floor
diagrams” appeared earlier in Athanasiadis and Linusson [2].) Essentially, each
diagram encodes the ceilings of a given region, from which we can easily determine
its recession cone.

4.1. Shi ceiling diagrams. Recall that the regions (cones) of the Coxeter arrange-
ment Cox(n) correspond to elements of the symmetric group S(n). If C ⊆ R

n is
the dominant cone — defined by the coordinate inequalities x1 > x2 > · · · > xn —
then the collection of regions of Cox(n) is {wC : w ∈ PS(n)}, where wC is defined
by the coordinate inequalities

(4.1) xw(1) > xw(2) > · · · > xw(n).

Now let R be a region of the deleted Shi arrangement Shi(G). Since Cox(n) ⊆
Shi(G), R is contained in some cone wC. In this case, what are the possible ceilings
of R? We note that the hyperplanes of Shi(G) that intersect wC are precisely

Φ+(G,w) := {xw(i) − xw(j) = 1 : ij ∈ G and w(i) < w(j)}.
(We can think of these as the noninversions of w contained in G.) Furthermore,
suppose that the region R is “below” some hyperplane xw(i) −xw(j) = 1 — that is,
suppose that each v ∈ R satisfies vw(i) − vw(j) < i. Then, considering (4.1), R is
also below any hyperplane of the form xw(i′) − xw(j′) = 1 such that

(4.2) w(i) ≤ w(i′) < w(j′) ≤ w(j′).

That is, if we declare a partial order on Φ+(G,w) by saying that xw(i′)−xw(j′) = 1
is “less than” xw(i) − xw(j) = 1 when condition (4.2) holds, then the collection of
Shi(G)-hyperplanes above R forms a down-closed set.

Theorem 4.1. There is a bijection between regions of Shi(G) in the cone wC and
order ideals (down-closed sets) in the poset Φ+(G,w). This map sends a region R to
the set of hyperplanes in Shi(G) that are “above” R (that contain R and the origin
in the same half space). The maximal elements of the ideal are the ceilings of R.

Proof. Let R be a region of Shi(G) contained in wC. We showed above that the
collection of hyperplanes aboveR is an order ideal in Φ+(G,w). The map is injective
since these hyperplanes uniquely determine R. Observe that the ceilings of R are the
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Figure 4.1. An order ideal (left) and a Shi ceiling diagram (right)

elements of the ideal that may be individually removed to obtain another ideal, and
these are precisely the maximal elements. We refer to Athanasiadis and Linusson
[2] for the proof that every ideal corresponds to a nonempty region. �

To express this combinatorially, we note that order ideals in Φ+(G,w) are
equivalent to nonnesting G-partitions whose blocks are “increasing” with
respect to w. Indeed, there is a bijection between ideals and antichains (sets
of pairwise-incomparable elements), since an ideal is uniquely determined by its
antichain of maximal elements. By sending the hyperplane xw(i)−xw(j) = 1 to the
arc ij, each antichain in Φ+(G,w) corresponds to a G-partition of [n] whose arcs
i < j satisfy w(i) < w(j). Finally, note that two arcs nest if and only if they are
comparable in the poset Φ+(G,w).

Following these remarks, we draw a diagram for each region of Shi(G).

Definition 4.1. Let R be a region of Shi(G) contained in the cone wC. We
associate R with the pair (w, π), where π is an order ideal in the poset Φ+(G,w)
of noninversions of w contained in G. Equivalently, π is a nonnesting G-partition
whose blocks are increasing with respect to w. We draw (w, π) by placing the arc
diagram for π above the numbers w(1), . . . , w(n), and we call this the Shi ceiling
diagram of R.

For example, let K8 =
(
[8]
2

)
be the complete graph on 8 vertices and consider

the permutation w = 51286347 ∈ S(8). Figure 4.1 displays the ideal in Φ+(K8, w)
(left) and the ceiling diagram (right) corresponding to a region R of Shi(K8) =
Shi(8) contained in the cone wC. The squares are elements of the poset Φ+(K8, w)
and the circles are elements of the ideal (closed to the right and down). The
hollow circles (maximal elements) indicate the ceilings of the region: x5 − x8 =
1, x1 − x6 = 1, x3 − x7 = 1. The corresponding nonnesting partition is π =
{{1, 4}, {2, 5}, {3}, {6, 8}, {7}}.

Figure 4.2 displays the whole arrangement Shi(3) with its regions labeled by
ceiling diagrams. Observe that we can read the degrees of freedom from the ceiling
diagram (w, π): The corresponding region has d degrees of freedom if and only if the
nonnesting partition π has d connected components. This is a general phenomenon.
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1520 DREW ARMSTRONG AND BRENDON RHOADES

Figure 4.2. The Shi arrangement Shi(3) labeled by ceiling diagrams

Lemma 4.2. Let R be a region of Shi(G) with ceiling diagram (w, π). This region
has d degrees of freedom if and only if the nonnesting partition π of [n] has d
connected components.

Proof. Suppose that π has d connected components. That is, there exist 1 < i1 <
· · · < id−1 < n such that π refines the partition

{{1, 2, . . . , i1 − 1}, {i1, i1 + 1, . . . , i2 − 1}, . . . , {id−1, id−1 + 1, . . . , n}}

and its restriction to any block of this partition is connected. We compute the
recession cone of Rec(R) ⊆ R

n of R as follows.
Consider v = (v1, . . . , vn) ∈ Rec(R). Since R is in the cone wC we must have

vw(1) ≥ vw(2) ≥ · · · ≥ vw(n). Moreover, if ij ∈ G with i and j in the same block of
π, then the coordinate inequality xw(i) − xw(j) < 1 holds on R and we must have
vw(i) = vw(i+1) = · · · = vw(j). Since these are the only constraints on v, we conclude
that the recession cone Rec(R) consists of all vectors of the form w · (a1, a2, . . . , an),
where a1 ≥ · · · ≥ an and where ai = aj if i and j are in the same connected
component of π. The dimension of the cone is therefore d. �

For example, consider the ceiling diagram (w, π) in Figure 4.1 and the corre-
sponding region R of Shi(8). The connected components of π are {1, 2, 3, 4, 5},
{6, 7, 8} and their images under w are {5, 1, 2, 8, 5}, {3, 4, 7}. Hence the recession
cone Rec(R) consists of all vectors of the form (a, a, b, b, a, a, b, a) ∈ R

8 with a ≥ b,
and it has dimension 2.

4.2. Ish ceiling diagrams. In order to compare the two arrangements, we now
define an Ish analogue of Shi ceiling diagrams.
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THE SHI ARRANGEMENT AND THE ISH ARRANGEMENT 1521

Since Cox(n) ⊆ Ish(G), each region R of Ish(G) is contained in wC for some
permutation w ∈ S(n), in which case each vector v = (v1, . . . , vn) ∈ R satisfies

(4.3) vw(1) > vw(2) > · · · > vw(n).

Which Ish(G)-hyperplanes are the possible ceilings of this region? If the hyperplane
x1 − xj = i intersects the cone wC, it must be true that x1 > xj on wC (since i is
positive). Considering (4.3), this means that j must occur to the right of 1 in the
list w(1), . . . , w(n) — that is, we must have w−1(1) < w−1(j). We conclude that
the Ish hyperplanes that intersect the cone wC are precisely

Ψ+(G,w) := {x1 − xj = i : ij ∈ G and w−1(1) < w−1(j)}.
Now let R be a region of Ish(G) in the cone wC and suppose that R is below
x1 − xj = i — that is, each v ∈ R satisfies v1 − vj < i. Then it is easy to check
that R is also below the hyperplane x1 − xj′ = i′, where

(4.4) either i < i′ or w−1(j′) < w−1(j).

By analogy with the Shi case, we define a partial order on Ψ+(G,w) by declaring
that the hyperplane x1−xj = i is “less than” the hyperplane x1−xj′ = i′ whenever
(4.4) holds. This leads to a useful characterization of Ish(G) regions.

Theorem 4.3. There is a bijection between regions of Ish(G) in the cone wC and
order filters (up-closed sets) in the poset Ψ+(G,w). This map sends a region R to
the set of hyperplanes in Ish(G) that are “above” R (that contain R and the origin
in the same half space). The minimal elements of the filter are the ceilings of R.

Proof. Let R be a region of Ish(G) in the cone wC. By the above remarks we know
that the collection of Ish(G)-hyperplanes above R is an order filter in Ψ+(G,w).
These hyperplanes, together with the fact that R lies in wC, uniquely determine
R, so the map is injective. The ceilings of R are precisely the elements of this filter
that may be individually removed to obtain another filter — that is, they are the
minimal elements.

To show that the map is surjective, we must show that each filter in Ψ+(G,w)
corresponds to a nonempty region of Ish(G). Let F ⊆ Ψ+(G,w) be an order filter
and let A ⊆ F be its set of minimal elements. For 1 ≤ i ≤ n define

zi = −max{j : x1 − xk = j ∈ A and w−1(k) ≤ w−1(i)},
where we adopt the convention that max(∅) = 0. One may check that the point
(zw(1), . . . , zw(n)) ∈ R

n lies on the boundary of a region of Ish(G) which maps to the
filter F . (Alternatively, note that Theorems 3.2 and 5.1 imply, respectively, that
the number of regions of Ish(G) and the number of filters in Ψ+(G,w) (summed
over w) are both equal to

n−1∑
k=0

Stir(G,n− k)
n!

(k + 1)!
.

Hence any injective map between then must be surjective.) �
It is convenient to express this situation with a picture. Given w ∈ S(n) we

draw w(1), w(2), . . . , w(n) on a line. For each j to the right of 1 we draw j − 1
boxes above the symbol j. If we identify the ith box above j with the hyperplane
x1 − xj = i, then the collection of boxes is exactly Ψ+(G,w) (we erase the boxes
that are not in G); the partial order on boxes increases up and to the left.
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1522 DREW ARMSTRONG AND BRENDON RHOADES

Figure 4.3. An order filter (left) and an Ish ceiling diagram (right)

Figure 4.4. The Ish arrangement Ish(3) labeled by ceiling diagrams

In Figure 4.3 (left side) we have drawn the poset Ψ+(G,w) for the complete
graph G = K8 and the permutation w = 51286347 ∈ S(8). The circles (closed up
and to the left) indicate an order filter in this poset. This filter defines a region R
of Ish(K8) = Ish(8) in the cone wC, and its ceilings are the antichain of minimal
elements (hollow circles): x1 − x8 = 1, x1 − x4 = 3, x1 − x7 = 5. To simplify the
diagram further (right side), we just draw i hollow circles above the symbol j for
each ceiling x1−xj = i. This is the Ish ceiling diagram of the region. We will encode
it with the pair (w, ε), where εi is the number of circles above the symbol w(i). For
the example in Figure 4.3 we have

(w, ε) = (51286347, (0, 0, 0, 1, 0, 0, 3, 5)).

Figure 4.4 displays the full arrangement Ish(3) with regions labeled by ceiling dia-
grams.
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THE SHI ARRANGEMENT AND THE ISH ARRANGEMENT 1523

In order to count regions later, here is a purely combinatorial characterization
of Ish ceiling diagrams.

Definition 4.2. Let G ⊆
(
[n]
2

)
be a graph and consider a permutation w ∈ S(n).

We call the pair (w, ε) an Ish ceiling diagram if the vector ε = (ε1, . . . , εn) satisfies:

• 0 ≤ εi < w(i);
• εi = 0 unless w−1(1) < w−1(i);
• if εi > 0, then εi < w(i) is an edge in G;
• the nonzero entries of ε strictly increase.

We will draw the pair (w, ε) by placing w(1), . . . , w(n) on a line and drawing εi
circles above w(i). By the above remarks, the pair (w, ε) corresponds to a unique
region of Ish(G) with a ceiling x1 − xw(i) = i for each εi �= 0.

Finally, we can read the recession cone of a region directly from its Ish ceiling
diagram.

Lemma 4.4. Let R be a region of Ish(G) in the cone wC with ceiling diagram
(w, ε). If k is the maximum index such that εk �= 0 (or k = w−1(1) if ε is the zero
vector), then R has n− k +w−1(1) degrees of freedom. In particular, the region R
is relatively bounded (has 1 degree of freedom) if and only if w(1) = 1 and εn �= 0.

Proof. Consider v = (v1, . . . , vn) ∈ Rec(R). Since R is in the cone wC we must
have vw(1) ≥ vw(2) ≥ · · · ≥ vw(n). If εj �= 0, then we must also have v1− vw(j) < εj ,
which implies that vw−1(1) = vw−1(1)+1 = · · · = vw−1(j). Since these are the only
constraints on v, we conclude that the recession cone Rec(R) consists of all vectors of
the form w ·(a1, a2, . . . , an) with a1 ≥ · · · ≥ an and aw−1(1) = aw−1(1)+1 = · · · = ak.

The dimension of the cone is therefore n− (k − w−1(1)) = n− k + w−1(1). �

For example, consider the Ish ceiling diagram (w, ε) in Figure 4.3 and the corre-
sponding region R of Ish(8). In this case we have w(1) = 5, and k = 8 is the largest
index such that εk �= 0. Hence the recession cone Rec(R) consists of all vectors
(a, a, a, a, b, a, a, a) ∈ R

8 with a ≥ b, and it has dimension 2.

4.3. A bijection between dominant regions. The Shi and Ish ceiling diagrams
immediately give us a bijection between dominant regions of Shi(G) and Ish(G)
with the same number of ceilings. This bijection does not preserve degrees of
freedom because it can’t: In general Shi(G) and Ish(G) have different numbers of
relatively bounded dominant regions. For example, Shi(3) has 2 (see Figure 4.2)
and Ish(3) has 3 (see Figure 4.4).

Theorem 4.5. Consider a graph G ⊆
(
[n]
2

)
and an integer c. The deleted ar-

rangements Shi(G) and Ish(G) have the same number of dominant regions with c
ceilings.

Proof. This is essentially a picture proof. For the identity permutation w = 1 we
observe that the posets Φ+(G,1) and Ψ+(G,1) look exactly the same, except that
one is reflected in a line of slope 1. For example, here are the posets corresponding

to the graph G =
(
[8]
2

)
− {14, 34, 48, 58}; Shi on the left, Ish on the right:
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1524 DREW ARMSTRONG AND BRENDON RHOADES

This reflection is an order-reversing bijection between Φ+(G,1) and Ψ+(G,1).
Hence it induces a bijection between ideals in Φ+(G,1) with c maximal el-
ements (dominant Shi(G)-regions with c ceilings) and filters in Ψ+(G,1) with c
minimal elements (dominant Ish(G)-regions with c ceilings). �

The number of dominant regions with c ceilings equals the Narayana number
1
n

(
n
c

)(
n−1
c

)
when G is the complete graph and equals the binomial coefficient

(
n−1
c

)
when G is the chain {12, 23, . . . , (n − 1)n}. We do not know a closed formula for
general G.

Note that the bijection in Theorem 4.5 does not extend to other cones wC, since
in general the posets Φ+(G,w) and Ψ+(G,w) look very different. Indeed, Shi(G)
and Ish(G) do not have the same number of regions in a given cone wC. (Consider
Figures 4.2 and 4.4 with the permutation w = 132.)

However, we gain something by summing over the cones wC. Not only do Shi(G)
and Ish(G) have the same number of (unrestricted) regions with c ceilings, they have
the same number of regions with c ceilings and d degrees of freedom. We prove this
in the next section using a nonbijective method.

5. Counting the regions

In this section we introduce a partition-valued statistic on the regions of Shi(G)
and Ish(G), and in each case we call this the ceiling partition of the region. (This
concept is new even for the Shi arrangement.) It turns out that Shi(G) and Ish(G)
have the same number of regions R with a given ceiling partition π. Moreover,
when the partition π has k blocks (i.e. R has n − k ceilings), this number has a
beautiful formula: n!/(n− k+1)!. The partition π does not determine the degrees
of freedom of R. However, we still have a nice formula: The number of regions of
Shi(G) or Ish(G) with ceiling partition π (with k blocks) and d degrees of freedom
equals

d(n− d− 1)!(k − 1)!

(n− k − 1)!(k − d)!
.

This completes the proof of the Main Theorem. At the end of this paper we make
comments and suggestions for future research.

5.1. Ceiling partitions. To each region R of Shi(G) or Ish(G) we associate a
partition of the set [n], called its ceiling partition. We note that this partition may
be nesting, and in general every partition of [n] will occur. The ceiling partition is
determined by the ceilings of R and the cone wC in which R occurs; thus we can
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THE SHI ARRANGEMENT AND THE ISH ARRANGEMENT 1525

read it from the ceiling diagram. We will see that the correct language for ceiling
partitions is the endpoint notation (a,b), discussed in Section 2.

Definition 5.1.

(1) Let R be a region of Shi(G) with ceiling diagram (w, π). Then the ceiling
partition of R is w ·π (with w acting on π). That is, the ceiling partition has
w(i) and w(j) in a block whenever i and j are in a block of π. For example,
the region in Figure 4.1 has ceiling partition {{1, 6}, {2}, {3, 7}, {4}, {5, 8}}
with endpoint notation (a,b) = (135, 678). Note that the ceiling partition
(a,b) has c arcs if and only if R has c ceilings.

(2) Let R be a region of Ish(G) with ceiling diagram (w, ε). We define a pair
of vectors (a,b) such that ai is the ith nonzero entry of ε, which occurs
in position w−1(bi). The conditions of Definition 4.2 guarantee that (a,b)
is the endpoint notation for a partition, which we call the ceiling partition
of R. For example, the region shown in Figure 4.3 has ceiling partition
(a,b) = (135, 847) since there is one circle above 8, three above 4, and
five above 7. Again, the ceiling partition has c arcs if and only if R has c
ceilings.

5.2. Counting Shi and Ish regions. Let c and d be integers. We separately
count the regions of Shi(G) and Ish(G) with c ceilings and d degrees of freedom,
and observe that they are the same. This completes the proof of the Main Theorem.

Theorem 5.1. Fix a graph G ⊆
(
[n]
2

)
and let A be either Shi(G) or Ish(G). Let

(a,b) be a partition of [n] with k blocks (n − k arcs) and consider an integer 1 ≤
d ≤ k. There exists a region of A with ceiling partition (a,b) if and only if we have
aibi ∈ G for all i, in which case:

(1) The number of regions of A with ceiling partition (a,b) is

n!

(n− k + 1)!
.

(2) The number of regions of A with ceiling partition (a,b) and d degrees of
freedom is

(5.1)
d(n− d− 1)!(k − 1)!

(n− k − 1)!(k − d)!
.

To obtain the number of regions with c ceilings and d degrees of freedom, sum (5.1)
over G-partitions (a,b) with k = n− c blocks.

Proof. First we deal with A = Shi(G). Recall that a Shi ceiling diagram (w, π) is a
nonnesting partition π whose blocks are increasing with respect to the permutation
w. Thus, to create a ceiling diagram (region) with ceiling partition (a,b), we must
first choose a nonnesting partition π0 with the same block sizes as (a,b) and then
put the labels from each block of (a,b) (increasingly) in a block of π0. Suppose
that (a,b) has ri blocks of size i. By Lemma 2.1 there are

n!

(n− k + 1)!r1!r2! · · · rn!
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1526 DREW ARMSTRONG AND BRENDON RHOADES

ways to choose π0. Then, there are r1!r2! · · · rn! ways to map each block of (a,b)
to a block of π0 with the same size. This proves (1). To prove (2), note that the
region (w, π) has d degrees of freedom if and only if the nonnesting partition π has
d connected components. Apply the same argument as above, but use Lemma 2.2.

Next we deal with A = Ish(G). We wish to create an Ish region (w, ε) with
ceiling partition (a,b). To do this, we choose w(1), . . . , w(n) and then place ai
circles above the symbol bi. This will be an Ish ceiling diagram as long as the
symbols bi occur in order, to the right of 1. That is, the permutation w must
satisfy

(5.2) w−1(1) < w−1(b1) < · · · < w−1(bn−k).

There are
(

n
n−k+1

)
ways to place these symbols and then (k− 1)! ways to place the

remaining symbols, proving (1). To prove (2), recall that (w, ε) has n− j +w−1(1)
degrees of freedom, where j is the largest index such that εj �= 0. In our case
j = w−1(bn−k), so w must satisfy the condition w−1(bn−k)−w−1(1) = n− d. First
we can choose the pair (w−1(1), w−1(bn−k)) in d ways. Having done this, the rest

of the permutation is subject to (5.2). There are
(
n−d−1
n−k−1

)
ways to place symbols

b1, . . . , bn−k−1 (left to right) in the n−d−1 positions between 1 and bn−k, and then
there are (k−1)! ways to place the remaining k−1 symbols. The result follows. �

Once again, note that this proof was more direct for Ish than for Shi. In fact,
the calculation of formula (5.1) for Ish was the inspiration for Lemma 2.2.

5.3. Concluding remarks. The notion of a ceiling partition has independent in-
terest, beyond the proof of Theorem 5.1. In particular, it leads to a new proof that
the Shi arrangement Shi(n) has (n+1)n−1 regions. Consider the collection of maps
from [n] into a set of size x. On one hand, there are xn of these. On the other
hand, there are Stir(n, k)x(x − 1) · · · (x − k + 1) such maps with image of size k,
where Stir(n, k) is the number of partitions of [n] into k blocks (fibers). This proves
the famous polynomial identity:

xn =
n∑

k=1

Stir(n, k)x(x− 1) · · · (x− k + 1).

Dividing by x and substituting x = n+ 1 yields

(n+ 1)n−1 =

n∑
k=1

Stir(n, k)
n!

(n− k + 1)!
,

where the right hand side counts regions of Shi(n) by the number k of blocks in
their ceiling partition.

Finally, here are some problems for future research.

(1) The original motivation for this paper was to find a bijection between re-
gions of Shi and Ish. We solved this problem for dominant regions, but not
in general. Based on Theorem 5.1, one should look for a bijection between
Shi ceiling diagrams (w, π) and Ish ceiling diagrams (w, ε) with a fixed
ceiling partition (a,b) and d degrees of freedom. Note that this bijection
cannot preserve the permutation w.

(2) Following Theorem 3.2, find a direct bijection between points of the finite
vector space F

n
p in the complements of the Shi arrangement Shi(G)p and

the Ish arrangement Ish(G)p.
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THE SHI ARRANGEMENT AND THE ISH ARRANGEMENT 1527

(3) The Shi arrangement is a famous example of a free hyperplane arrangement.
Investigate the freeness of Ish arrangements.

(4) Define and study an extended Ish arrangement corresponding to the ex-
tended Shi arrangement:

Shi(n,m) := {xi − xj = a : 1 ≤ i < j ≤ n , −m+ 1 ≤ a ≤ m}.

(5) To what extent do the results of this paper apply to other deformations of
the Coxeter arrangement?

(6) The deleted Shi arrangements exist for arbitrary crystallographic reflection
groups. Define and study Ish arrangements for other reflection groups.
Ish arrangements were invented to study q, t-Catalan numbers; this feature
should extend to other types.
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