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We have an n × n chessboard. A board is a subset of these n2
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The rook number rk is the number of ways to put k
non-attacking rooks on the board, that is, the number of ways to
choose k squares from the board with no two in the same row
or column.

In our example, r0 = 1, r1 = 5, r2 = 6, r3 = 1, r4 = r5 = 0.
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Hit numbers

We can identify a permutation π of [n] = {1,2, . . . ,n} with the
set of ordered pairs { (i , π(i)) : i ∈ [n] } ⊆ [n]× [n], and we can
represent such a set of ordered pairs as a set of n squares from
[n]× [n], no two in the same row or column.
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The squares of a permutation that are on the board are called
hits of the permutation. So this permutation has just one hit:
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The hit number hk is the number of permutations of [n] with k
hits.

Basic problem: Compute the hit numbers. Sometimes we just
want h0, the number of permutations that avoid the board.
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want h0, the number of permutations that avoid the board.



Examples

For the board

hk is the number of permutations with k fixed points, and in
particular, h0 is the number of derangements.



For the board

hk is the number of permutations with k excedances, an
Eulerian number.



The fundamental identity

∑
i

hi

(
i
j

)
= rj(n − j)!.

Proof: Count pairs (π,H) where H is a j-subset of the set of hits
of π. Picking π first gives the left side. Picking H first gives the
right side, since a choice of j nonattacking rooks can be
extended to a permutation of [n] in (n − j)! ways.

Multiplying by t j and summing on j gives∑
i

hi(1 + t)i =
∑

j

t j rj(n − j)!.

so setting t = −1 gives

h0 =
∑

j

(−1)j rj(n − j)!.
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Inclusion-Exclusion

Another way to look the formula h0 =
∑

k (−1)k rk (n − k)! is
through inclusion-exclusion. We want to count permutations π
of [n] satisfying none of the properties π(i) = j for (i , j) ∈ B,
where B is the board.

If a set of k properties is consistent (corresponding to
nonattacking rooks) then the number of permutations satisfying
all these properties is (n− k)!; otherwise the number is 0. Thus
the sum over all sets of k properties of the number of
permutations satisfying these properties is rk (n − k)!.
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Rook polynomials

We define the rook polynomial for a board B ⊆ [n]× [n] by

rB(x) =
∑

k

(−1)k rkxn−k

Now let Φ be the linear functional on polynomials in x defined
by

Φ(xn) = n!.

(Then Φ(p(x)) =
∫∞

0 e−xp(x) dx .) Thus h0(B) = Φ(rB(x)).

What good are rook polynomials?
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They have a multiplicative property: rB(x) = rB1(x)rB2(x).

B1

B2



Of special interest are the rook polynomials of complete
boards: Let ln(x) be the rook polynomial for a board consisting
of all of [n]× [n].

So l3(x) = x3 − 9x2 + 18x − 6, and in general

ln(x) =
n∑

k=0

(−1)k
(

n
k

)2

k ! xn−k .



These polynomials are essentially Laguerre polynomials and
they are orthogonal with respect to Φ:

Φ(lm(x)ln(x)) =

{
m!2, if m = n
0, otherwise
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More generally, Φ(ln1(x)ln2(x) · · · lnj (x)) counts “generalized
derangements": permutations of n1 objects of color 1, n2 of
color 2, . . . , such that i and π(i) always have different colors.

This was proved by Evens and Gillis in 1976, without realizing
the connection with rook theory.

We would like to generalize this to other orthogonal
polynomials.
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Basic idea: We have a sequence of sets S0, S1, . . . with
cardinalities M0, M1, . . . . For each n, there is a set of properties
that the elements of Sn might have. If a set P of properties is
“incompatible” then there is no element of Sn with all these
properties. Otherwise, there is some number ρ(P) such that the
number of elements of Sn with all the properties in P is Mn−ρ(P).
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In all of our examples, we’ll also have multiplicativity.
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In our example, Sn is the set of permutations of [n], Mn = n!,
the properties that a permutation π might have are π(i) = j for
each possible i and j . A set of properties is compatible if and
only if it corresponds to a nonattacking configuration of rooks,
and for a set P of k compatible properties, ρ(P) = k .
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We’d like to count the number of elements of Sn with none of
the properties in P. By inclusion-exclusion this is∑

A⊆P
A compatible

(−1)|A|Mn−ρ(A)



Now let us define the generalized rook polynomial or
characteristic polynomial of P to be

rP(x) =
∑
A⊆P

A compatible

(−1)|A|xn−ρ(A)

Then the number of elements of Sn with none of the properties
in P is Φ(rB(x)), where Φ is the linear functional defined by
Φ(xn) = Mn.



A simple example: matching polynomials

Let us take Sn to be the set of complete matchings of [n]:
partitions of [n] into blocks of size 2. Then Mn = 0 if n is odd
and if n = 2k then

Mn = (n − 1)!! = (n − 1)(n − 3) . . . 1 = (2k)!/2kk !.

The properties that we consider are of the form “{i , j} is a
block.” Here if A is a set of compatible properties then
ρ(A) = 2|A|, and the linear functional function Φ has the integral
representation

Φ(f (x)) =
1√
2π

∫ ∞
−∞

e−x2/2f (x) dx ,



The matching polynomials for “complete boards” are the
Hermite polynomials

Hn(x) =
n∑

k=0

(−1)k n!

2kk ! (n − 2k)!
xn−k ,

and these are easily seen to be orthogonal combinatorially.



Let us return to permutations, but add in a parameter to keep
track of cycles: we weight each cycle by α. Then the sum of the
weights of all permutations of [n] is

αn = α(α + 1) · · · (α + n − 1),

which reduces to n! for α = 1. Everything works as before, with
Φ(xn) = αn. Our “rook numbers” rn(α) are now polynomials in
α. For example, the cycle rook polynomial for the board

is x2 − (2 + 2α)x + (α + α2).

The cycle rook polynomials for complete boards are general
Laguerre polynomials.
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Partition polynomials

Now let Sn be the set of partitions of [n], so Mn = |Sn| = Bn, the
nth Bell number. The linear functional Φ for which Φ(xn) = Bn
can be represented by

Φ(f (x)) = e−1
∞∑

k=0

f (k)

k !
.

(Dobiński’s formula.) More generally, we could keep track of the
number of parts (Stirling numbers of the second kind).
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(Dobiński’s formula.) More generally, we could keep track of the
number of parts (Stirling numbers of the second kind).



We consider properties

Pij : i and j are in the same block.

Then the number of partitions of [n] satisfying Pij is Bn−1. The
number of partitions with any two of these properties is Bn−2.

But how many partitions of [n] have properties P12, P23 and
P13?

Bn−2, because P13 is implied by P12 and P23. So the rank
ρ({P12,P23,P13}) is 2.
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Then the partition polynomial (generalized rook polynomial) of
the set {P12,P23,P12} (taking n = 3) is

x3 − 3x2 + 3x − x = x3 − 3x2 + 2x = x(x − 1)(x − 2).

Note that this polynomial x(x − 1)(x − 2) is the same as the
chromatic polynomial of the complete graph K3.

In general, the partition polynomial rG(x) for a graph G
(adjacent vertices in G are not allowed in the same block) is the
same as the chromatic polynomial of G.

Why is this? There are two ways to prove this.
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(1) Any set of edges corresponding to the same contraction of
G will give equivalent conditions. By collecting equivalent terms
in the inclusion-exclusion formula for rG(x), we can write it as a
sum over the lattice of contractions of G, and the coefficients
will be values of the Möbius function of the lattice of
contractions. This sum is known to be equal to the chromatic
polynomial.

(The lattice of contractions of G is the lattice of partitions of the
vertex set of G in which every block is connected.)

Alternatively, we could use Möbius inversion directly.
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(2) We know that Φ(rG(x)) is the number of partitions of [n] in
which vertices adjacent in G are in different blocks.

But it’s easy to see that the chromatic polynomial of G can be
expressed as

PG(x) =
∑

i

uix i ,

where x i = x(x − 1)(x − 2) · · · (x − i + 1) and ui is the number
of partitions of [n] with i blocks in which vertices adjacent in G
are in different blocks. It’s well known that Φ(x i) = 1 for all i .
(G.-C. Rota suggested that this should be taken as the
definition of the Bell numbers! )

So Φ(PG(x)) =
∑

i ui = Φ(rG(x)).

By the same reasoning, for any m, Φ(xmPG(x)) = Φ(xmrG(x)),
and this implies that PG(x) = rG(x).
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In the context of partition polynomials we can take additional
conditions of the form “i is in a singleton block.” So we can
count partitions in which certain pairs are not allowed to be in
the same block, and certain singleton blocks are not allowed.

If we take all restrictions on [n], we get orthogonal polynomials
Cn(x), called Charlier polynomials.

They are orthogonal because Φ(Cm(x)Cn(x)) counts partitions
of {1,2, . . . ,m} ∪ {1,2, . . . ,n} in which 1, . . . ,m are all in
different blocks, 1, . . . ,n are in different blocks, and there are no
singletons. The only way this can happen is if every block
consists of a red number and a blue number, and this requires
m = n.
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Factorial rook polynomials

Let’s return to ordinary rook numbers. Recall that we defined
the rook polynomial of a board B in [n]× [n] to be∑

k (−1)k rkxn−k .

Goldman, Joichi, and White (1975) defined the factorial rook
polynomial of B to be

FB(x) =
∑

k

rkx(x − 1) · · · (x − (n − k) + 1) =
∑

k

rkxn−k .

Why is it useful?
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From the fundamental identity
∑

i hi
(i

j

)
= rj(n − j)! and

Vandermonde’s theorem, we get

FB(x) =
∑

i

hi

(
x + i

n

)
.

So the coefficients of FB(x) in the basis {xk} for polynomials
are the rook numbers for B, and the coefficients of FB(x) in the
basis {

(x+i
n

)
}0≤i≤n for polynomials of degree at most n are the

hit numbers for B.



Equivalently,

∞∑
m=0

FB(m)tm =

∑
i hn−i t i

(1− t)n+1 .

As a consequence of the last formula, we have the reciprocity
theorem for factorial rook polynomials:

FB(x) = (−1)nFB(−x − 1),

where B is the complement of B in [n]× [n].
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Goldman, Joichi, and White showed that for Ferrers boards:

the factorial rook polynomial factors nicely into linear factors



and they also proved a factorization theorem for factorial rook
polynomials:

B1

B2

FB(x) = FB1(x)FB2(x).



A simple example: the factorial rook polynomial for the 1× 1
empty board is x . So by the factorization theorem, the
factorial rook polynomial for the upper triangular board

is FB(x) = xn.

Then
∑∞

m=0 mntm = An(t)/(1− t)n+1, where An(t) is the
Eulerian polynomial, and by the reciprocity theorem,
FB(x) = (x + 1)n.
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The Cover Polynomial

Just as with ordinary rook polynomials, we can introduce a
parameter α to keep track of cycles. The “cycle factorial rook
polynomial” is defined by

FB(x , α) =
∑

k

rk (α)xn−k .

It was introduced by Chung and Graham in 1995 under the
name cover polynomial.



The analogue of

FB(x) =
∑

i

hi

(
x + i

n

)
is

FB(x , α) =
∑

i

hi(α)
(x + α)ixn−i

αn .

The polynomials

(x + α)ixn−i

αn

=
(x + i + α− 1) · · · (x + α)x(x − 1) · · · (x + i − n + 1)

α(α + 1) · · · (α + n − 1)
(1)

are a new basis for polynomials of degree at most n that reduce
to
(x+i

n

)
for α = 1.
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We have the generating function
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)
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(1− t)n+α .

The Goldman-Joichi-White result on factorization of F (x) for
Ferrers boards extends directly.

For ordinary rook polynomials, permuting the rows or columns
doesn’t change the rook numbers or hit numbers. But they do
change when we keep track of cycles.

There is a beautiful result of Morris Dworkin giving a sufficient
condition for the cover polynomial of a permuted Ferrers board
to factor nicely.
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Let Tn be the staircase board { {i , j} : 1 ≤ i ≤ j ≤ n }.

Its cover polynomial is FTn (x , α) = (x + α)n.

For a permutation σ, let σ(Tn) be Tn with its rows permuted
by σ, so there are σ(i) squares in row i .
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Dworkin’s theorem: If σ is a noncrossing permutation with c
cycles, then Fσ(Tn) = (x + α)c(x + 1)n−c .

As a consequence, the generating polynomial An,c(t , α) for
permutations π of [n] according to the cycles of π and
excedances of σ ◦ π is given by

An,c(t , α)

(1− t)n+α =
∞∑

m=0

(
m + α− 1

m

)
(m + α)c(m + 1)n−c tm.



What is a noncrossing permutation?

A noncrossing permutation with one cycle looks like this:

1 2 3 4 5

In generally, a noncrossing permutation is made from a
noncrossing partition by making each block into a cycle of this
type:
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What is a noncrossing permutation?

A noncrossing permutation with one cycle looks like this:

1 2 3 4 5

In generally, a noncrossing permutation is made from a
noncrossing partition by making each block into a cycle of this
type:



So the number of noncrossing permutations of [n] is the
Catalan number Cn = 1

n+1

(2n
n

)
and the number of noncrossing

permutations of [n] with c cycles is the Narayana number
1
n

(n
c

)( n
c−1

)
.



q-analogs of factorial rook and cover polynomials have been
studied by Dworkin, Garsia, Remmel, Haglund, Butler, and
others.


