
LONGEST INCREASING AND DECREASING 
SUBSEQUENCES 

C. SCHENSTED 

This paper deals with finite sequences of integers. Typical of the problems 
we shall treat is the determination of the number of sequences of length n, 
consisting of the integers 1, 2, . . . , m, which have a longest increasing sub-
sequence of length a. Throughout the first part of the paper we will deal 
only with sequences in which no numbers are repeated. In the second part 
we will extend the results to include the possibility of repetition. Our results 
will be stated in terms of standard Young tableaux. 

PART I 

Definition. A standard Young tableau of order n is an arrangement of n 
distinct natural numbers in rows and columns so that the numbers in each 
row and in each column form increasing sequences, and so that there is an 
element of each row (column) in the first column (row) and there are no 
gaps between numbers. 

Example. 2 4 7 
3 8 (order = 7) 
5 9 

Definition. The shape of a standard tableau is an arrangement of squares 
with one square replacing each number in the standard tableau. 

Example. The shape of 2 4 7 is as shown in Figure 1. 
3 8 
5 9 

FIG . 1. 
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One reason that standard tableaux are so useful to us is that it is easy to 
compute the number of standard tableaux of a given shape either by means 
of a simple recurrence relation, or by means of the following elegant result; 
Frame, Robinson, and Thrall (1). 

THEOREM. The number of standard tableaux of a given shape containing the 
integers 1, 2, . . . , n is 

(i) n\ 

n H, 
Here the hj are the hook lengths, that is, the number of elements counting 

from the bottom of a column to a given element and then to the right end 
of the row. 

Example. To compute the number of standard tableaux of the shape shown 
in Figure 2(a), we first find the hook lengths, which are shown in Figure 

FIG. 2(a). 

6 5 3 
4 3 I 
2 I 
F I G . 2(b). 

2(b). Then we find that the number of standard tableaux of this shape is 

9! 
6-5-3-1-4-3-1-2-1 = 168. 

Definition. S <— x is defined as the array obtained from the standard tableau, 
Sj by means of the following steps: 

(i) Insert x in the first row of 5 either by displacing the smallest number 
which is larger than x, or if no number is larger than x, by adding x at the 
end of the first row. 

(ii) If x displaced a number from the first row, then insert this number 
in the second row either by displacing the smallest number which is larger 
than it or by adding it at the end of the second row. 

(iii) Repeat this process row by row until some number is added at the 
end of a row. 

In the above steps "adding at the end of the row" is interpreted as putting 
in the first column in the given row if the row does not yet have any entries 
in it. We define x—> S similarly except that we replace the word "row" by 
the word "column" throughout. 
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Example. If 5 = 2 4 7 then 
3 8 
5 9 

2 4 6 
S <- 6 = 3 7 and 6 - + S 

5 8 
9 

LEMMA 1. S *—X and x —> S are standard tableaux. 

Proof. Since the proofs for S <r— x and x —> 5 are similar we consider only 
S <— x. 

First we note that if two consecutive rows of S have the same length, and 
if a number is displaced from the first of these two rows, then it will either 
displace the number which was standing under it or else some number to 
its left, and thus will not be added at the end of the row. Thus a row cannot 
be made longer than the row above it and S <— x cannot fail to be a standard 
tableau on account of its shape. Thus we have only to prove that the num-
bers in each row and column still form increasing sequences. 

A number is inserted into a row in such a place that the number to its 
left (if any) is smaller, and the number to its right (if any) is larger. Thus 
the numbers in each row form increasing sequences. 

The number (if any) which ends up below a number which is inserted at 
a new position is either the number which it displaced, which is therefore 
larger, or else the number which previously stood below the number which 
it displaced, which is larger still. 

When a number is displaced from one row to the next it ends up either in 
the position directly beneath the one in which it originally stood, or else 
further to the left (since it is smaller than the number which previously stood 
underneath it). Thus it is either under the number which displaced it, which 
is therefore smaller, or else a number to the left of it, which is smaller still. 

The last two paragraphs show that two consecutive numbers in a column 
form an increasing sequence if either of them has just been inserted into its 
present position. If neither of them has just been inserted, then they are the 
numbers which were previously there in 5 and which therefore are in in-
creasing order. Hence the columns also form increasing sequences and the 
proof of the lemma is completed. 

Definition. The P-symbol corresponding to a sequence of distinct integers 
the standard tableau (. . .((xi <— x2) <— x3) . . . *— xn). The 

Q-symbol corresponding to the same sequence is the array which is obtained 
by putting k in the square which is added to the shape of the P-symbol when 
xk is inserted in the P-symbol. 

2 4 7 
= 3 8 

5 9 
6 



182 C. SCHENSTED 

Examples. 

Sequence 3 3 5 3 5 4 3 5 4 9 3 5 4 9 8 3 5 4 9 8 2 3 5 4 9 8 2 7 
P-symbol 3 3 5 3 4 3 4 9 3 4 8 2 4 8 2 4 7 

5 5 5 9 3 9 
5 

3 8 
5 9 

Q-symbol 1 1 2 1 2 1 2 4 1 2 4 1 2 4 1 2 4 
3 3 3 5 3 5 

6 
3 5 
6 7 

LEMMA 2. The Q-symbol corresponding to an arbitrary sequence is a standard 
tableau. 

Proof. Since the Q-symbol has the same shape as the P-symbol, and since 
the P-symbol is a standard tableau, the shape of the Ç-symbol is legitimate. 
Each digit added to the Q-symbol is larger than all of the previous digits, and 
in particular is larger than the digits above it and to its left. Hence the 
numbers in each row and column form increasing sequences, and the lemma 
is established. 

LEMMA 3. There is a one-to-one correspondence between sequences made with 
the n distinct integers X i , %2i • • • » Xn and ordered pairs of standard tableaux of 
the same shape—the first containing Xi, x2, . . . , xn and the second containing 
1 , 2 , . . . , » . 

Proof. Given a sequence, the P-symbol and Q-symbol are uniquely deter-
mined standard tableaux of the type mentioned in the lemma. Given a pair 
of standard tableaux of the appropriate types we can find the unique sequence 
which could have them for a P-symbol and Q-symbol as follows: The position 
of the largest number in the second tells us which number was added on to 
a row of the first without displacing another number when the last digit was 
inserted. This must have been displaced from the previous row by the largest 
number which is smaller than it (there always will be at least one number 
smaller than it in the preceding row since the one directly above it is smaller). 
This in turn must have been displaced from the next row up. Finally we get 
to the first row and discover what number was inserted into it. This is the 
last digit of the sequence. We now also know what the P-symbol and Q-symbol 
were before the last digit was inserted. Thus we can repeat the procedure to 
find the next to the last digit of the sequence. This proves the lemma. 

Note. Since there are n\ possible sequences of Xi, X2, . . . , xn, Lemma 3 
shows that there are n\ ordered pairs of standard tableaux of order n such 
that the shapes of tableaux in each pair are the same, but the shapes of 
tableaux in different pairs are not necessarily the same. This fact is already 
known (2). Of course, the number of ordered pairs of standard tableaux of a 
given shape is equal to the square of the number of standard tableaux of 
that shape, which is given in turn by Expression (1). 
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Definition. T h e 7th basic subsequence of a given sequence consists of the 
digits which are inserted into the 7th place in the first row of the P-symbol . 

L E M M A 4. Each basic subsequence is a decreasing subsequence. 

Proof. Each number in the 7th basic subsequence, on insertion in the first 
row displaces the previous member of the j t h basic subsequence, which mus t 
therefore be larger than the present member. 

L E M M A 5. Given any member ofthejih basic subsequence, we can find a member 
of the (j — l ) s t basic subsequence which is smaller and which occurs further to 
the left in the given sequence. 

Proof. T h e number in the (j — l ) s t place in the first row, when the given 
member of the 7th basic subsequence is inserted, is such a member of the 
(7 — l ) s t basic subsequence. 

T H E O R E M 1. The number of columns in the P-symbol {or the Q-symbol) is 
equal to the length of the longest increasing subsequence of the corresponding 
sequence. 

Proof. The number of columns is the same as the number of basic subse-
quences. By Lemma 4 there can be a t most one member of each basic sub-
sequence in any increasing subsequence. By Lemma 5 we can construct an 
increasing subsequence with one element from each basic subsequence, 
Q.E.D. 

Note. The proof shows us how to actually obtain in increasing subsequence 
of maximal length. 

L E M M A 6. (x —» S) <— y = x —-> (5 <— y). 

Proof. Suppose first, t h a t of all the digits in x, y} and 5, the largest is y. 
We represent S schematically by Figure 3. There are two cases of interest . 

FIG. 3. 

T h e square added to the shape of S in x —» 5 is in the first row, or it is not. We 
represent x —> S schematically in these two cases by Figure 4(a) and 4(b) 
respectively, where x' is the number added to the end of some column 
without displacing another number when we form x —» S. I t is easily verified 
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13 

zH 
FIG. 4(a). F I G . 4(b). 

that in the first case the final result is as shown in Figure 5(a) and in the 
second case the result is that of Figure 5(6). 

(x + S)-

FT7 

= x-WS-*-y) 

F I G . 5(a). 

(x-^S)-
m 

m = x-MS-*-y) 

F I G . 5(b). 

This proves the lemma if y is the largest number involved, and the proof 
is similar if x is the largest number involved. 

Suppose now that, of all the digits in x, y, and S, the largest is X, and 
that N is in 5. In this case we use induction. The lemma can be easily verified 
by direct calculation if 5 is of order 0, 1, or 2. We assume the lemma true 
for 5 of order n, and prove that it is then true for 5 of order n + 1. 

Let us suppose, then, that 5 is of order n + 1. Now, since N is the largest 
number in 5, we see that N is at the end of whatever row it is in, and also 
at the end of its column. Thus, if we remove TV from S we will obtain a new 
standard tableau, Sf, of order n. Now since N is larger than any of the other 
numbers, it can never displace any of them, and hence the presence or absence 
of N cannot have any influence on the position of the other numbers. Thus 
(x —> S) <— y will be the same as (x —> S') *— y except that N is added some-
where, and x —» (S <r-y) will be the same as x —> (Sf <— y) except for the 
addition of N. However, since Sf is of order n, we have by assumption 

(*-> S') < - ? = * - > (S'+-y). 
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Thus we have only to prove that N occupies the same position in (x —> S) <— y 
and x —> (S *— y) to prove the lemma. The truth of this can be easily verified 
for each of the possible cases which can arise as to the relative locations of 
N, xf, and y'. Here x'(yf) is the number which is added to some column (row) 
without displacing another number when we form x —> S' (Sf <— y). In making 
these verifications it is necessary to keep the following facts in mind. 

If x' and y' do not fall into the same square, then we represent 5", x —» S', 
and Sf^-y schematically by Figure 6(a), 6(6), and 6(c) respectively. 
The shape of (x —> S') <— y must have a square added to the shape of 

FT 
jr 

FIG. 6(a). FIG. 6(6). 

x —» Sf, and the shape of x —» (5" <-
shape of S' <— y. By assumption (x 
shape of (x —> S') <— y and x —» (5r <-

FIG. 6(C). 

- 3O must have a square added to the 
-> Sf) <r- y = x —• (S' <— 3;) so that the 
- 3/) must be Figure 7. 

p 
F I G . 7. 

If x' (in x—> S') and y' (in S' <— y) occupy the same position then we 
schematically represent 5' , x —> S't and 5 ; <—3/ by Figure 8(a), 8(6), and 
8 (c) respectively. Here the shaded parts of x —» 5r and S' <— 3; are the 

p xj l!l 

FIG. 8(a). F IG. 8(e). FIG. 8(C). 

regions where numbers could have been displaced. Now let us suppose 
that y'\> xr. Then when we insert y into x —> 5r the same numbers will be 
displaced in each row as were displaced when we inserted y into S, until 
we displace y'. 
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In S' <— y we would have put yf where x' is, but y' > x', thus y' will be 
added at the end of the row containing x', and the shape of (x —» S') <— y 
(and hence of x —> {Sf *— y)) will be Figure 9. If we had had xr > y\ then 

I 

FIG. 9. 

the shape of (x —> S') <— y and x —» (5" <— 3;) would have been Figure 10. 
Thus, if we know the shapes of x —» S' and 5 ' <— 3/, and if we know whether 
x' > y' or x' < y', then we know the shape of (x —> S') <— y and x —» (5" <— j ) . 

F I G . 10. 

Now we can return to the problem of showing that N has the same position 
in (x —> 5) <— 3; and x -^ (5 —̂ y). As we mentioned there are several special 
cases. We will consider only three of these as the others go in the same way. 
First suppose that the position of N in S does not coincide with either the 
position of xr in x —> Sr or the position of yf in Sr <— y. Then N will never 
be displaced and it will have the same position in (x —» S) «— y and x —» (S<—y) 
as it does in S. 

Next suppose that the position of N in 5 coincides with the position of xf 

in x —» 5r , and that the position of yf in Sr <— 3/ lies to the left of this. Then 
we have schematically Figure 11. 

Finally suppose that the position of N in S coincides with the position 
of xr in x —» 5r, and that the position of y' in 5r <— 3> lies one column to the 
right of this. Then schematically we have Figure 12. Proceeding similarly we 
can verify all of the other special cases, and hence the validity of Lemma 6. 

LEMMA 7. If one sequence is a second sequence written backwards, then P-
symbol of the first is obtained from the P-symbol of the second by interchanging 
rows and columns. 

Proof. First we note that x —» y = x <— y since if x < y they are both 
xy and if x > y they are both y. Now we define P(xu x2, . . . , xn) = (. . . ((xi 



INCREASING AND DECREASING SUBSEQUENCES 187 

1 
j i l 

-s'= m S'+y 

m 

x->-S = *M1 S-«-y5 M 
FT 

(x->-S)- |N| - x- -(S-«-y) 

FIG. 11. 

<— x2) <— x3) . . . <— #n) and P(xi, x2, . . . , xn) = (xi —> . . . (xw_2 —> (*w-i —»xM)) 
. . .)• Next we assume that P(xi, x2, . . . , xra_i) = P(xi, x2, . . . , xn-i) and that 
P(xi, x2, . . . , xn) = P(xi, x2, . . . , x j and prove that P(xi, x2, . . . , xw, #w+i) = 
P(#i, #2, . . . ,xnixn+i). (We have just shown that P(xi, x2) = Xi <— x2 = 
Xi •—> x2 = P(xi, x2), furthermore P(xi) = Xi = P(xi).) We have 

P(xi, X 2 , . . . , Xnj Xn-±i 1, x2 , • . . 

= P(Xij X 2 , . . . 

+ P(x2, 
> [P(X2, 
' [P(X2, 
>P(X2,. 

= [xi-
= X i -

— X i — 
= X\ ~~ 
= X i — 

» Xn) Xw.-f 1 

1 Xn) * Xn-\-\ 

• • > ^ W J ^rH-1 

• • > ̂ w j ^ w + l j 

• • j Xn) Xw_|_iJ 

. , Xn, Xn-\-\) 

' xyXo, • • • ? Xn, Xn-j-i) 

= P(xi, x2, . . . , xn, xn+i). 

Of these lines, the second, fifth, and seventh follow by assumption, and the 
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s= 
J! 

x-H5'= 

UJ 
S-<-y = 

x->-S = 

X' 

ET S-
N. 

£j 

(x- y = y 
N 

xl 
-x - • ( S ^ - j / ) 

F I G . 12. 

fourth from Lemma 6. Now P(xi, . . . , xn) is the P-symbol for the sequence 
. . . , xni while P{x\, X2, . . . , xn) is the P-symbol for the sequence 
, #2, Xi with rows and columns interchanged. Hence the lemma follows. 

X\, X2, 
xn.... 

Note. It must not be assumed that Lemma 7 holds for Q-symbols. 

THEOREM 2. The number of rows in the P-symbol {or the Q-symbol) is equal 
to the length of the longest decreasing subsequence of the corresponding sequence. 

Proof. This follows immediately from Theorem 1 and Lemma 7, since 
writing a sequence backwards changes increasing subsequences into decreasing 
subsequences. 

THEOREM 3. The number of sequences consisting of the distinct numbers 
and having a longest increasing subsequence of length a and a 

longest decreasing subsequence of length j3, is the sum of the squares of the numbers 
of standard tableaux with shapes having a columns and /3 rows. 
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Proof, Follows immediately from Lemma 3 and Theorems 1 and 2 (see 
also the note to Lemma 3). 

Example. To find the number of permutations of 1, 2, 3, . . . , 25 having a 
longest decreasing subsequence of length three and a longest increasing sub-
sequence of length 21 we note that the only allowed shapes with 25 squares, 
21 columns, and 3 rows are those of Figure 13. 

rrrri 111111111111111 M 

M I I I M 1 I 1 I I I I I I 1 I 

FIG. 13. 

By the Frame-Robinson-Thrall theorem, the corresponding numbers of 
standard tableaux are 21,000 and 31,350 respectively. Thus the desired 
number of permutations is 

21,0002 + 31,3502 = 1,423,822,500. 

PART II 

We now want to consider sequences in which some of the numbers are 
repeated. We can obtain the properties of such sequences in terms of sequences 
without repetitions by a simple artifice. Suppose the smallest number appears 
p times in the sequence, the next smallest q times, etc. We replace the p 
occurrences of the smallest number by the numbers 1,2, . . . , / > (in this 
order), the q occurrences of the next number by p + 1, p + 2, . . . , p + q, 
etc. Then the decreasing subsequences of the two sequences will be in one-
to-one correspondence, while the increasing subsequences of the new sequence 
will be in one-to-one correspondence with the non-decreasing subsequences 
of the original sequence. 

Example. Given the sequence 3 3 2 3 4 1, we replace 1 by 1, 2 by 2, the 
three 3's by 4, 5, 6, and 4 by 7. The result is 4 5 2 6 7 1. The latter sequence 
has a decreasing subsequence 5 2 1 which corresponds to a decreasing sub-
sequence 3 2 1 in the original and an increasing subsequence 4 5 6 7 which 
corresponds to a non-decreasing subsequence 3 3 3 4 in the original. 

If we construct the P-symbol for the derived sequence, and map the 
numbers in it back to the numbers in the original sequence, then we get a 
modified standard tableau in which repeated numbers are allowed, the numbers 
in each column form an increasing sequence, and the numbers in each row 
form a non-decreasing sequence. Since the numbers in the <2-symbol refer to 
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the order of addition of spaces to the P-symbol, the Q-symbols of the two 
sequences will be identical. 

We can get modified forms of each of the results in Part I. The main result, 
Theorem 3, now takes the form: 

THEOREM 4. The number of sequences of Xi, x2, . . . , xn having a longest non-
decreasing sequence of length a and a longest decreasing sequence of length /3 is 
the sum of the products of the number of modified standard tableaux of a given 
shape with the number of standard tableaux of the same shape, the shapes each 
having a columns and /3 rows. 

Example. To find the number of sequences of seven numbers consisting 
entirely of l 's, 2's, and 3's having a longest non-decreasing sequence of length 
four and a longest decreasing sequence of length three, we proceed as follows. 
The possible tableaux must have the shape of Figure 14. 

F I G . 14. 

The possible modified standard tableaux are 
1 
2 
3 
1 
2 
3 
1 
2 
3 

1 2 

2 2 

2 2 

1 1 
2 3 
3 
1 
2 
3 
1 
2 
3 

1 2 

2 3 

2 3 

1 1 
2 2 
3 
1 1 
2 3 
3 
1 2 
2 3 
3 

1 3 

2 3 

1 1 

1 3 

3 3 

1 1 
2 3 
3 
1 1 
2 2 
3 
1 1 
2 3 
3 

1 1 

2 2 

3 3 

3 3 They are 15 in number. 

By the Frame-Robinson-Thrall theorem the number of standard tableaux 
of this shape is 35. Hence the number of sequences of the desired type is 
15 X 35 = 525. 

As a further example we will work out explicit formulae for binary sequences 
(sequences consisting of 0's and l's). In this case the modified standard 
tableaux have the general form of Figure 15, where the bracketed region can 
have any division of 0's and l's (the 0's preceding the l's, of course). 

1 o1o161oIoT I I I I 
11111111111 

F I G . 15. 
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Let n be the number of digits in the sequence. Let m be the length of the 
longest non-decreasing subsequence. Then there are no sequences for which 
m < n/2. If m = n the longest decreasing subsequence is of length 1. If 
n/2 < m < n, the longest decreasing subsequence is of length 2. 

The number of possible modified tableaux is 2m — n + 1. The number of 
standard tableaux is 

(2m - n + 1) 7 TTV77 Vf • 
(m + \)\(n — m)\ 

Thus the number of binary sequences of n digits with a longest non-decreasing 
subsequence of length m is 

n\(2m — n + 1) 
(m + l)\(n — m)\ ' 

Note. Since the total number of binary sequences is 2n we have 

2n = y^ n\(2m - n + l ) 2 

£>n\<L(m + l)!(w - m)\ ' 
In the above derivation we allowed all possible binary sequences. Theorem 

4 also readily solves the problem if the number of O's and l's in the sequence 
is fixed. In this case there is at most one modified tableau and thus the number 
of sequences of n digits with a longest non-decreasing subsequence of length 
m is 

n\(2m — n + 1) 
(m + l)!(n — m)\ 

with the additional restriction that the number, p, of O's in the sequence 
must satisfy n — m < p < m. 

Note. This shows that 

(A = y n!(2m - n + 1) 

Throughout Part II we could have dealt equally well with increasing and 
non-increasing subsequences rather than decreasing and non-decreasing 
subsequences. 
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