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ON THE REPRESENTATIONS OF THE SYMMETRIC GROUP.* 

By G. DE B. ROBINSON. 

Introduction. In the study of the irreducible representations of the sym- 
metric group two methods are available. The first is an application of the 
Frobenius-Schur theory of the characters which is valid for any group, the 
second is the 'substitutional analysis' of Young. Neither of these methods 
tells the whole story, and they should be used in conjunction.1 

Here we propose to show that the two problems dealt with by Murnaghan 2 

in his paper " On the Representations of the Symmetric Group," lend them- 
selves to a treatment by Young's methods. An answer to the first problem 
may be obtained from a formula given by Young; 3 we shall clarify this some- 
what embodying the result in the rule Y or Y'. Littlewood and Richardson 4 

have given a theorem involving a rule LR which, if accompanied by a satis- 
factory proof, would provide an answer to Murnaghan's second problem. We 
propose to supply a proof, basing it directly on Y. The chief advantage of 
these methods is in the simplicity of the final expression of the result. It is 
unnecessary to refer to any tables, and the irreducible components appear 
explicitly,-no cancellation is necessary. On the other hand if we are con- 
cerned with the characters " the Frobenius-Schur theory is essential. In the 
last section of the paper we give illustrations of the application of these rules. 

I must express my thanks to Mr. D. E. Littlewood for suggestions which 
led to the revision of the original draft of ? 5 on lattice permutations. A 
specific acknowledgment is made in the text. 

1. The product and power representations of the full linear group. 
'The theory of the representations of the symmetric group Sln on n symbols is 

very closely associated with that of the rational representations of' the full 
linear group L, whose degree we shall take to be 1. There is an infillity of 

such irreducible representations but those of order n are to found amongst the 
irreducible components of the K-ronecker product 

(1. 1) Hn(L) == L X L X L X ni factors. 

* Received February 4, 1938; Revised April 18, 1938. 
1 [20], chapter V. 
2 [5], p. 469 and p. 478; cf. also [8]. 
3 [21], Part VI, p. 199. 
4 [3], p. 119. 
5 [6]. 

745 
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746 G. DE B. ROBINSON. 

The deg-ree of ll% (L), known as the product representation, is ln. A very 
elegant reduction of ln (L) has been given by Schur,6 who shows that with 
every irreducible representation 7 (A) of Sn of degree fx is associated an irre- 
ducible representation T(? (L), or as we shall write {A} of L. This reduction 
is accomplished by constructinig matrices of degree ln permutable with H., (L), 
which interchange the n sets of variables 8 according to the permutations of Sn. 
These n! matrices yield a representation of S,,, and froin Schur's Lemma it 
follows that {A) appears in H. (L) with multiplicity fx. 

If we suppose that all the factors in (1. 1) operate on the same set of 
variables the resulting representation is known as the n-th power representa- 
tion of L and denoted Pn (L). Corresponding to a given partition (a, 22 , ,v) 
or (a) of n where a1 2 a2 2 ? av, we may construct the representation 

Plal(L) X Pa2(L) X X Pal,(L). 

Let us denote by Pa the sub-group of Sn of order a,! cc2! * av !, which is 
the direct product of the sub-groups S,1 on the first ac symbols, S,2 on the next 
a2 symbols, and so on. This sub-group gives rise to a permutation representa- 
tion 9 of Sn of degree 

n ! nc 
(Z,! a'! (V! t}' 

which we may denote A(ac), extending the notation to write 

(1. 2) A(a) (L) = Pal (L) X Pa2( L) X * X Per (L). 

In particular lln(L) =- A(,) (L). Evidently A() (L) = P"(L) {n}, so that 

we may write (1. 2) in the form 

(1. 3) A(a)(L) = {(x} X {(22} X . . X {aV}. 

Clearly also we may write 

(1. 4) A(a) (L) =- (.) (L) X /(e) (L), 

where the numbers 83, /382, , J3X; y/, 72, 
. . . are the a's possibly re- 

x 
arranged, so that Pi 2 Pi+, and yj 27j!+l for all i, j, X + K v, > f3 

A J=1 

1 yj m, and I + m = n. 
j=1 

6 [13], ?? 1 and 2. 
"No confusion will result if we use the same symbol (X) to denote the corre- 

sponding conjugate set of S. 
8Cf. [19] and [1]. 
9 [10]. 
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ON THE REPRESENTATIONS OF THE SYMMETRIC GROUP. 747 

By identifying the characters 10 it follows that {A} appears in A(,, (L) 
with the same multiplicity as does, (A) in AL(a). 

2. A formula of Young applied to the reduction of A (a). A method 
for determining the irreducible components of Av(a), or of A(,a) (L), has been 
given by Murnaghan.11 We shall make use of a formula 3 of Young's which 
is applicable to the situation: 

n! a ~ [HSrs1 Ta. (2.1I) h! (n) rP = [S8 r T 
It is not necessary here to go into any detailed account of Young's analy- 

sis, we shall merely give enough to explain the symbols involved. Corre- 
sponding to a conjugate set (a) of S. we may construct a tableau 

all al2 . . . 
al 

[ ] 21 a21 *2 * a2a2 

av, aV2 ava v 

where, as before, ai ? ai+, for all i and E =a n. From the rows of [a] 
'hi 

we construct substitutional expressions {ail ai2 }aai representing the sum 
of all the operations of Sa,; multiplying these together we obtain 

Pa {all a12 
. 

a. } {a, a22 
. . * a2.2} * * * {avl * . . 

aVav}- 

The brackets { } and their product Pa as well as other expressions Na, 
Ta which we shall form are specially chosen members of the group-ring to 
which S. gives rise. The members of this group-ring may be thought of as 
operators but we shall not stress this interpretation. The relation with our 
former Pa is so close we need not distinguish between them. 

Similarly from the j-th column of [ax] we construct fa1j a,j . }', where 
flow every odd permutation has coefficient - 1. Such an expression Young 
calls a 'negative symmetric group,' and from the columns we obtain 

Na {a1l a21 av,}' {al2a2 . }' {ala] I'. 

Thus with any given arrangement of the n letters in the tableau form [a] 
we may associate the product Pcz,Na, and denoting summation over all possible 
n! arrangements by P we may write 

10 [13]; [5], pp. 444-448; and [8], p. 45. We use A (a) with the same meaning as 
does Murnaghan, while our {X1} has a different significance. 

11 [5]. The results are tabulated up to n = 9. 
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748 G. DE B. ROBINSON. 

T - fa()2i2rPaNa 

We may define the tableau [a] as standard if the letters in each row and 
column appear in the order of some given sequence. It can be shown that 
just fa of the m! are standard, where 

JI (ar-as- r + s) 

fa It! 
I.'s 

H (acir+v -r)! 
r 

and that Ta may be expressed in terms of them only: 

Ta Lfa (P1N> + P2N2 + + Pfa N'), 

where N' XNrMr. The introduction of the multiplicative factor Mr is neces- r 
sary to obtain orthogonality, but we need not go into this. For us the im- 
portant fact is that corresponding to each conjugate set (a) we have a tableau 
[a] and a resulting T, which leads directly to the irredcucible representation 12 

of Sn. 

12 It may be worth while at this point to relate some recent work by Specht [14] 

and [16] with this analysis of Young. Following Schur [12], if we replace the sym- 

bols aj, in dictionary order, by xi (i = 1, 2, . . . , ni), we may uniquely associate with 

each tableau [a] the product of powers 

a(X) = (x 1x2 . . . 
$aiL) ? (xa.+1xa+2 

. . *. Xal+a2 ) *. . ( ln-av+1 -av+2 . *x Xn) 

A permutation P of En will leave 8(x) unaltered or transform it into 5P(x) according 

as P is, or is not, contained in Pa' Instead of treating the group ring directly Specht 

constructs functions 
d (a) (x) =i (Q)&Q (x) 

Q 
Na = . ( Q ) Q. as above, 

Q 

and t (Q) ? 1 as Q is even or odd, which under the permutations of S. yield a 

modul M (Sn; d(a) (x) ). Confining our attention to standard tableaux this modul leads 

to the irreducible representation (a) of En. Specht's method of constructing the actual 

matrices is the same as Young's and the results are identical (cf. [21] Part IV, p. 253; 

for a re'sume of Young's theory cf. Part III, pp. 258-269. In Part VI the theory is 

further developed to give the actual matrices of the representation (a) in orthogonal 

form according to a very simple rule contained in Theorems 4 and 5, pp. 217 and 218). 

In [18] Specht generalizes Young's Ta to apply to any permutation group P,. 

It can be shown that 

Ta "= (fa/n!) E XP,i 

(cf. [21] Part IV, p. 256) where X(5) is the characteristic of P` in (a). Specht writes 
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ON THE REPRESENTATIONS OF THE SYMMETRIC GROUP. 749 

We may now write (2. 1) in the following manner: 13 

(2. 2) A((a) [HS s] (a). 

In this form it gives the reduction of A (a) which we are seeking. 
Young 14 defines the operation Srs as follows: 

" Srs where r < s represents the operation of moving onre letter from 
the s-th row up to the r-th row, and the resultirng term is regarded 

Y as zero, whenever any row becomes less than a row below it, or when 
letters from the same r-ow overlap,-as, for instarce, happens when 
al a2 in the case of S13S23." 

As an illustration we have 

(2. 3) A(3, 2, 1)= [1+S23+S13+S12+S12S23+Sl2Sl3+S122S23 + S122S13] (3, 2, 1) 
- (3, 2, 1) + (32) + (4, 2) + (4, 12) +(4, 2) + (5, 1) + (5, 1) + (6). 

3. The Littlewood and Richardson rule for the reduction of {,8} X {y}. 
The second problem treated by Mlurnaghan 15 is the reduction of {,B} X {Y} 
into its irreducible components {a} of order n. His method is based on Schur's 
expression of the characters as determinants or as quotients of alternaints. 
This method has been used by Specht.16 

Littlewood and Richardson have also studied this reduction. Their means 

Xe .f(x) = (ge/h) i X(a) f (X) 

where f (x) is a rational integral homogeneous function of the x,, gE is the degree of 

the irreducible representation of Pn, and h is the order of P,. Corresponding to the 
relations amongst the T's 

Ta Ta ==Tan 

IT. a 1 = < 
a 

we have 

X (E (xt ) 2ig (c), Xe(Xxf (x) -o, M (P,,; f (X) ) = WP ; XEf(X)) 

The function f (x) is d(a) (x) in the case of the symmetric group, and is similarly 
obtainable from the tableaux in the case of the alternating and hyper-octahedral group 
(cf. [15] with [21] Part V),-otherwise how actually to construct it is unknown. 

13 Cf. [9]. 
14 [21] Part VI, p. 199. For a changed interpretation cf. Y' at the end of ? 4, 

which clarifies somewhat the application of Y, and is applied to the example (2. 3) 

at the beginning of ? 7. 
Actually he considers the corresponding problem for finite groups. 

16 [17], p. 155. 
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750 G. DE B. ROBINSON. 

of approach is through what they call Schur or S-functionis, which are none 
other than the characters of the {a,}. Their reduction of the product of two 
S-functions of degrees I and m into a sum of S-functions of degree n, corre- 
sponds exactly to the reduction of {,8} X {y} into its irreducible components 
{a}. Their chief contribution to the theory is the following theorem: 17 

To every tableau which may be constructed according to the following rule 
there corresponds an irreducible component {a} of {,8} X {y}, and all such 
components are thereby obtained. 

LR1: " Take the tableau [,8] iibtact and add to it the letters of the first 
rouw of [y]. These may be added to one row of [/3], or the sym- 
bols may be divided without disturbing their order into any num- 
ber of sets, the first set being added to one row of [f], the second 
set to a subsequent row, the third to a row subsequent to this, and 
so on. After the addition no row mnust contain more symbols than 
a preceding row, and no two added symbols may be in the same 
columin. 

Next add the second row of [y], according to the same rules 
followed by the remaining rows in succession until all the symbols 
of [y] have been used. 

LR: These additions shall be such that each symbol of a given row of 
[y] in the compound tableau must appear in a later row than the 
letter in the same column fr-om the preceding row of [y]." 

In what follows we shall establish a connection with Young's equation 
(2. 2) which will enable us to extend the methods used by Littlewood and 
Richardson to give a proof of their theorem."8 

4. A proof of the Littlewood and Richardson rule. As a first step it 
will be convenient to modify somewhat Young's tableau [a] on which the Srs 
of (2. 2) are supposed to operate. If we interchange a pair of rows leaving 
the letters in the same columns as before Pa remains unaltered, and the only 
change induced in (2. 2) is in the interpretation of the operators Sr,;-others 
amongst their products will yield the components of the right-hand side. In 
particular we may rearrange the rows of [ac] so that those of [,8] come first, 
followed by those of [y], thus: 

17 [3], p. 119. 
18 There are some slips in the application of the theorem to the reduction of 

{4, 3, 1} X {22, 1}, pointed out by Murnaghan [7]. 
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ON THE REPRESENTATIONS OF THE SYMMETRIC GROUP. 751 

bil b12 ...bl,6 

b2l b2.82 

[fl A bxl *b,p,, 
Cll C12 ClY 

C21 C272 

The corresponding representation of the full linear group L remains the same, 
i. e. {ca} = {/3; y}, and (ac) (/3; y). If we generalize the S,r so that r may 
be greater than s, we may describe the passage from [ca] to [,(; y] by means 
of a product SO of S's. In particular SO = S322S23 transforms 

a a a a a a 
[3, 2, 1] : b b into [3, 1; 2] : c 

c b b 

To pass from an operator as applied to [a] to that as applied to [/3; y] 
it is only necessary to multiply by So-' and keep track of the letters involved, 
which we may do by an appropriate prefix. E. g. we may write So' bS232 cS32 

and the operator S23 as applied to [3, 2, 1] leads to 

bS232 CS32 * CS23 bS23 

or simply S232 as applied to [3, 1; 2]. If after the multiplication an operator 
Srs remains where r > s, as in the case of 1 operating on [3, 2, 1], we may 
first combine it with the other members of Se-', ignoring the prefixes, and 
remultiply. The resulting tableaux will in this case not be identical with 
those derived from [3, 2, 1], certain letters in the same columns being inter- 
changed, but the correspondence between the two sets of tablaux is unique.'9 
Corresponding to (2. 3) we have 

(4. 1) A (3, 1; 2) = [S23 + S232 + S232S12 + S13 + S13S23 

+ S23S13S12 + S132 + S132S12] (3, 1; 2). 

In order to avoid confusion we shall write these operators Srs as applied 
to this modification [,3; y] of [ac] as Ar,, the operators Srs as applied to [/] 
as Brs and as applied to [y] as CU.,. Combining (1. 4) and (2. 2) we may 
write 

19A more complicated example would be 1 operating on [4, 3, 2, 11 leading to 

%3314 24 == A232 S34 operating on [4, 1; 3, 2]. 
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752 G. DE B. ROBINSON. 

(4.2) Y[11AX;s]{/3; y} [ [[lBX;s]{/3)] X [Y[HCXrs]{y}] 
{03} X[Y[llCr- ]{y}] + 

+ {I} x [ [lICl;\s]{y}]. 

From the above interpretation of Srs operating on [/A; y] it is clear that we 
may identify Ars for s .? X with Brs; e. g. in (4. 1) S12 A12 = B12. 

Young's original restrictions Y on the Srs as applied to [ac] still hold 
since they are not affected by the above correspondence. Thus we may think 
of the tableaux arising on the left of (4. 2) under the operations Ars as falling 
into sets representative of the irreducible components 20 of 

{,} X A(y)(L), 

and built on [a], derivable from [,/] by the Brs operating according to Y. 
The rule of operation of the At,x+j we write as: 

Y1: Take the tableaux [p3] intact and add to it the letters of the first 
row of [y] under At,x+1. These may be added to one row' of [/8], 

or the symbols may be divided (without disturbing their order) 
into any number of sets, the first set being added to one row of [/3], 
the second to a subsequent ro'W, the third to a row subsequent to 
this, and so on. After the addition no row must contain more sym- 
bols than a preceding row, and no two added symbols may be in the 

same column. 

Next add the second row of [y], according to the same rules 
followed by the remaruirnig rows in succession, until all the symbols 
of [y] have been used. 

Y2: To obtain tableau built on [,8] replace [/3] by [a3] in Y1. 

The parenthesis in Y1 is unnecessary at this stage, in fact all the letters in a 

given row of [y] may be taken to be the same (cf. the example at the be- 

ginning of ? 7), but it will be needed shortly to add definiteness to the resulting 
tableaux. It is important to remark that LR1 and Y1 are identical. 

If we let 381 - a, and yl * yv-1 l , Y2 becomes unnecessary 
and Y, may be written Y', which is equivalent to Y in view of the equation 

(4. 3) A(a) (L) {(xi} X A(a2a3. . . av) (L). 

This change of viewpoint seems to clarify the application of Y and makes it 

a very simple matter to write down the tableaux representative of the irre- 

ducible components of A (a) . 

20 By suppressing the c's we arrive at a tableau representative of fXI8 and we may 

think of [P] as occupying the upper left hand corner of the compound tableau, leading 

to the idea that this is built on [tl]. 
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ON THE REPRESENTATIONS OF THE SYMMETRIC GROUP. 753 

5. Lattice permutations. Permutations of the m letters 

(5.1) cll C 272. . . CYJA 

have been studied at some length, and a particular class called lattice per- 
mutations have been given prominence by MacMahon.21 The definition of a 
lattice permutation is that amongst the first r terms of it the number of 

ci's ? the number of c2's > ? 2 the number of c11's for all r. If we add a 

second suffix to the ci's according to the order of their appearance, for each i, 
we may define a set of numbers which may be called indices of the permutation. 
Considering first only the c1's and the c2's, if C28 follow cit and precede c1,t+1 
its index is defined as s- t and we write 

i128 S t, 

which may be positive, zero, or negative. As pointed out by Littlewood and 
Richardson 22 the resulting permutation of C1llC2Y2 is a lattice permutation if 
and only if no i128 > 0. Similarly we may define indices i238, i348, etc. and 
any permutation of the letters (5. 1) is lattice if and only if no t$,+1,8 > 0 

(x = 1, 2, , * *, - 1). An important property of a lattice permutation is 

that by comparing it with the natural arrangement, or identical permutation, 
of the symbols we may uniquely associate it with a standard tableau, and con- 
versely. E. g. with the permutation 

14 
1231 we associate the tableau 2 

3 

the lattice permutation indicating in which row the corresponding symbol is 
to be placed. Thus the number of distinct lattice permutations 23 of the letters 

(5.1) is justf7. 
We now show how any non-lattice permutation may be associated with a 

lattice permutation. The steps in the process are as follows: 

(a) Considering only the c1's and the c2's in the permutation, take the 
first c2 with the greatest positive i128 and change it into a c1. Re- 
allocating the second suffixes repeat the process, continuing until the 
ce's and the c2's are all lattice. 

(b) Considering only the c2's and the C3'S in the permutation so modified, 
take the first C3 with greatest positive i238 and change it into a c2. 

21 [4], vol. I, p. 124. 
22 [3], p. 121. Dr. A. Young has drawn my attention to the fact that the index 

ir,-+1,8 is almost identical with a number used by him ([21] Part VI, ? 15). In his 

notation 'Yr+l,s, r - irr+1, + 2 and the condition that ir, r+1,s 2 0 is the same as 

-Yr+i, s,r ; 2, or that his second tableau function I (Yr, s, t 1 ) > O0 

23 Any two such we may speak of as belonging to the same class. 

16 
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754 G. DE B. ROBINSON. 

If this change upsets the 1-2 lattice property correct for it by 
changing a c2 into a c1 according to (a) ; this may or may not be the 
new C2. Re-allocating the second suffixes repeat the process, con- 
tinuing until the c1's, c2's and c3's are all lattice. 

(c) Making use of the indices i348, i458 .* . . 7 it-1,is proceed as above, con- 
tinuing until all the cl's, c2's, , cIA's are lattice. 

This 24 we shall refer to as the associattion I. 
Let us think of these changes in the light of Y' as applied to [y], and 

associate them with the operators COj in the followilng manner. 

(a') Changing a c2 into a c1 we associate with the operator C12. 

(b') If changing a C3 into a C2 does not spoil the 1-2 lattice property 
we associate it with the operator C23. 

(b") If changing a C3 into a C2 does spoil the 1-2 lattice property and 
we must change a c2 into a c1, we associate it with the operator C13. 

(c') Similarly changing a C4 is associated with C34, C24, or C14 as further 
changes are necessary; etc. Finally changing a cEl is associated with 
C,l ljtl C1L-2 ,1, - or Clll. 

Thus with each non-lattice permutation of the letters (5. 1) we may also asso- 
ciate an operator 
( 5 . 2 ) CX12 C .13 *.* 

. l. IC0rs 
12 13 /-1, rs 

which is one of those 25 applied to [y] under Y'. This we shall describe as the 
association II. 

We are now ready to pass on to the conclusion of the proof of the Little- 
wood and Richardson theorem, but before doing so it will be worth while to 
consider in greater detail these two associations I and II in the case 

=1 72 = 1. The tableau [y] is in this case 

1 

2 
3 

m 

and each of the operators (5. 2), which we shall denote L2, leads to a standard 

24 I am indebted for this association I to Mr. D. E. Littlewood. 
25 Clearly the lattice condition assures at each stage that the number of letters in 

any row is not less than the number in a succeeding row of the corresponding tableau. 
Changing the " first cr+i with greatest positive ir,r+l,s " precludes the possibility of two 
letters from the same row appearing in the same column, as will be clear from the 
following example. The permutation c3c3c1c,c1C2 leads to c1c1C1c2c1c2 under the association 

This content downloaded from 205.175.118.33 on Fri, 09 Oct 2015 18:27:45 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


ON THE REPRESENTATIONS OF THE SYMMETRIC GROUP. 755 

tableau and a corresponding lattice permutation L2. Thus with each of the 
m! permutations of the letters we can associate under I a lattice permutation 
L1, and under II a lattice permutation L2, and L1 and L2 belong, to the same 
class. Conversely, by reversing the steps (a), (b) and (c) we may pass back- 
ward to the permutation which 26 we may denote (S). This passage may be 
indicated thus: 

123 . . . m 

If we interchange the roles of the two lattice permutations L1 and L2 it is not 
difficult to see that 

12 3 . . . m 

Clearly if L1 = L2 then S2 1. This remarkable duality enables us to con- 
struct a square table having Efy rows and columns which is symmetrical about 
its leading diagonal, down which appear the Yfy solutions 27 of S2 = 1. The 
remaining substitutions of Sm appear in blocks Of fa2, and mfa2 = n!. There 
follows this table constructed for m = 4. 

1234 1231 1213 1123 1122 1212 1112 1121 1211 1111 

1 S14 IS13S34 S12S23S34 S12S23S24 S13S24 S12813824 S12S23814 8S13S14 812813814 

1234 1234 

1231 1243 1342 2341 
(34) (234) (1234) 

1213 1423 1324 2314 
(243) (23) (123) 

1123 4123 3124 2134 
(1432) (132) (12) 

1122 2143 3142 
(12) (34) (1342) 

1212 2413 3412 
(1243) (13) (24) 

1112 3214 4213 4312 
(13) (143) (1423) 

1121 3241 4231 4132 
(134) (14) (142) 

1211 3421 2431 1432 
(1324) (124) (24) 

1111 4321 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _( 1 4 ) (2 3 ) 

I and to the operator C132 under II, not to C1C2c1C2C1C2 and the operator U13C23 (cf. the end 
of the third paragraph on p. 122 of [3]). 

26 Assuming that the identical permutation is transformed by S into the given 
permutation. 

27 [2], p. 197, since all the irreducible representations of S,. are real. 
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6. Conclusion of the proof. We have now reached the final stage of 
our argument and may confine our attention to those tableaux built on [/3] 
which are representative of the irreducible components of 

(6. 1) {A} X [MIIC>a]-{y}] = {/8} X {Y} + {0} X {m}* 

We follow Littlewood and Richardson 28 and from any such tableau read the 
ct/'s from the right omitting the second suffix, beginning at the first row and 
taking the remaining rows in succession. Written in this order we have a 
permutation of the letters (5. 1). A little consideration will show that if a 
tableau built on [p3] according to Y1 (or LR1) is to satisfy LR2 it is necessary 
and sufficient that the permutation of the c's obtained as above described 
should be a lattice permutation. 

We assume the Theorem to be true for all products {/3} X {y}, where 
[y] is derivable from [y] under the Cr8, and apply an induction to prove it 
for {,,} X {y}. That is, we assume that all tableaux satisfying the appro- 
priate LR2 yield the irreducible components of {/3} X {y}, since as we have 
seen LR1 is automatically satisfied; this is equivalent to saying that the 
corresponding permutation is a lattice permutation. But clearly this is neces- 
sarily so in the case of {A8} X {mn}, where all the letters of [in] belong to the 
same row. Each non-lattice permutation of c01Y c2*Y2 c..Y'I is associated with 
an operator ICx1s under the association II, and conversely with each such 
operator is associated a set of tableaux built on [,B] according to LB1 and LR2. 

Thus those which remain, namely the lattice permutations, represent tableaux 
built on [/] according to LR2, and yield the irreducible components of 

{A8} X {-Y} 

7. Examples of the application of the rules Y, Y', LR. We may obtain 
the irreducible components appearing in 

(2.3) /(3, 2,1) [1?+S23+S13+S12+S12S23+Sl2Sl3+S122S23 + S122S13] (3, 2, 1) 
--(3 2~, ) +(3 2)+(4~,2) +(4, 12)+(4, 2) +(5 ) + (5 ) + (6), 

by the more systematic rule Y'. Taking the tableau [3, 2, 1] to be 

a a a 
b b 
c 

we write down the first row intact, and add the letters of the second row 
according to Y1. To the resulting tableaux, namely 

28 [3], p. 121. 
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a a a b b, a a a b, a a a, 
b b b 

we must add the letter c, obtaining from the first 

a a a b b c== S,22S,3[3,2, 1], a a a b b=SI22S23[3,2, 1]; 
c 

from the second, 

a a a b c = S12S13[3, 2, 1], a a a b _ S12S23[3, 2,1], a a a b == S12[3, 2,1]; 
b bc b 

and from the third, 

a a a c =S13[3,2,1], a a a=S23[3,2,1], a a a =[3,2,1]. 
b b b bc b b 

These tableaux yield the required components. 

As an illustration of LR we shall write down the tableaux representative 
of the irreducible components of {4, 22, 1} X {23}. It will be easier to build 
on [4, 2', 11, and since this tableau remains unaltered we shall represent its 
elements by .'s. We write 

[4, 22, 1] . . . ., [23]: a, a2, 

* * bi b2 

* * C1 C2 

and begin by adding the letters of the first row of [23] to [4, 22, 1] according 
to LR1 (= Y1). Then to these tableaux we similarly add the letters of, the 
second and third rows of [23], subject at each stage to LI?2. 

*.* * a,a2,, * a,, * *a * aa2, . . a,a2; 

. .b b2 . bib* b1b2 . . bi b2 

Co C2 **c1 * eCe * 

* C2 0 .C 

C2 C2 
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. *. a, a2, * * * a2; * * * a, a2, * a a2; * a a2 

. . bl. . bl. . bl* * *l . * 

* - 1* * - 1* -1 * - 
. b2 . b2 . C. bi 

C2 Cl C2 b2 b2 b2 Cl 

C2 C2 C2 

** * * a,, * ** * a1, ** * * a1, * * * * a,; * * * * a,, * * * * a,; 
* . a2 bi . . a2b, * * a2 bi * * a2b1 * * a2 bi * * a2 bi 
..b2 cl b2c .. b2 . c b2 1 * * 

*C2 * *C C2 * c. b2 . b2 

C2 C2 C2 C1 C2 

* ** * aa, * * * * a; a, a; * * * *a; * * * al 

* *a2b * * a2b, * *a2 * * a2 * *a2 * a2 

* * * * . . . . * . b 

* * c1 . b2 cl . b2 0c bi 

b2 b2 C2 cl c2 b2 b2 c 

C2 C2 C2 C2 

* * * *al, . . . .ai; * * * *a: . . .a, * * * aL; 

. l* * oh1 * * ..b * o*1b* 

* a2 * a2 * a2 0c 

b2 b2 cl bi b2 a2 a2 
C2 C2 C1 C2 b2 b2 

C2 C2 

* * * *a: * * .*, . . . .; . . . ., . . . .; 

.* ala2 . a, a2 . a, a2 ** a1 a2 

.0 * *b bb2 . b b2 . bi . bi 

.bi C. Cr2 .c, b2 Cl .b2 

a2cl C2 C2 C1 C2 

b2 
C2 

o . . .; . . . . . . . ., . . . .; . . .* 

o *a1a2 . .a,a2 .a a, a, 
o* * * . . * * b* * 

* Cl * bo * a2c1 * a2 * a2 

b2 b2 cl b2 b2 cl bi h2 

C2 C2 C2 C2 Cd C2 
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., bi al*a,l 
* * a1 * * a1* 

* Cl* b* al 

a2 a2cl a2b, 
b2 b2 b2 C 

C2 C2 C2. 

While the number of tableaux which it is necessary to construct in a given 
product may not be small, nevertheless after a little practice the application 
of LR becomes quite mechanical, and is entirely elementary. Each tableau 
representing an irreducible component, we have tne equation 

{4,22,1} X {23}= (6,.42,1) + (6, 4, 3, 2) + (6,4,3, 12) + (6,4,22,1) 

+ (6, 32, 2, 1) + (6, 3, 23) + (6, 32, 13) + (6, 3, 22, 12) 

+ (6 24 1) + (5 42, 2) + (5, 42, 12) + (5,4,32) 

2(5, 4, 3, 2, 1) + (5, 4, 23) + (5, 4, 3, 13) 

+ (5, 4 22, 12) + (5, 33, 1) + (5, 32, 22) + (5, 32, 2, 12) 

+ (5, 3, 23, 1) + (5, 32, 2, 12) + (5, 3, 23, 1) + (5, 25) 

+ (5, 32, 14) + (5, 3, 22, 13) + (5, 24, 12) + (43, 3) 
+ (43, 2, 1) + (42, 32, 1) + (42, 3, 22) + (42, 3, 2, 12) 

+ (42, 23, 1) + (4, 33, 12) + (4, 32, 22, 1) + (4, 3, 24) 

+ (4 32 2 13) + (4, 3, 23, 12) + (4, 25, 1). 

THE UNIVERSITY OF TORONTO. 
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