Math 561: Foundations of Combinatorics
Lecturer: Prof. Sara Billey

Problem Set \#2

due Wednesday, October 11, 2017
Reading: In Chapter 1, read Sections 1.3-1.5.
Recommended Problems: Give each of these problems careful consideration before reading the solutions: Chapter 1: $3(\mathrm{f}$ and g), 10, 13, 15(c), 19, 23, 24, 57, 58, 60.

Homework Problems: For each of the problems below, explain your answer fully. No credit will be given for a simple statement of the answer. Each problem is worth 10 points unless otherwise specified.

1. If $f(x)$ is the ordinary generating function of the sequence $\left\{a_{n}\right\}_{n \geq 0}$ then express simply, in terms of $f(x)$, the ordinary generating functions for the following sequences:
(a) $\left\{\alpha a_{n}+c\right\}_{n \geq 0}, \alpha, c$ constants.
(b) $a_{0}, 0, a_{2}, 0, a_{4}, 0, a_{6}, 0, a_{8}, 0, \ldots$
(c) $\left\{a_{n+2}+3 a_{n+1}+a_{n}\right\}_{n \geq 0}$
(d) $0,0,1, a_{3}, a_{4}, a_{5}, \ldots$
2. Exercise 12 from Chapter 1 of EC1.
3. Exercise 14 from Chapter 1 of EC1.
4. Exercise 17 from Chapter 1 of EC1.
5. Exercise 29 from Chapter 1 of EC1.
6. Exercise 58(a) from Chapter 1 of EC1.
7. Use RSK to give a combinatorial proof that 321 -avoiding permutations are Catalan objects.
8. Compute the number of ways to write the permutations $21,321,4321$ as a minimal product of adjacent transpositions (reduced expressions). Extend this sequence as far as possible and use Sloane's On-line Encyclopedia of Integer sequences to conjecture an explicit formula for the number reduced expressions of the permutation $n, n-1, \ldots, 1$. (Bonus: Prove your conjecture.)
