Math 561: Foundations of Combinatorics
Lecturer: Prof. Sara Billey

Problem Set \#1

due Wednesday, October 4, 2017

Reading: In Chapter 1, read Sections 1.1 and 1.2 specifically omitting pages 10-14 for now. Also read the Appendix on Graph Theory Terminology pages 571-573.

Recommended Problems: Give each of these problems careful consideration before reading the solutions: Chapter 1: 2, 3ab, 8b, 9a.

Homework Problems: For each of the problems below, explain your answer fully. No credit will be given for a simple statement of the answer. Each problem is worth 10 points unless otherwise specified.

1. Use the Pigeonhole Principle to prove that the decimal expansion of any rational number m / n eventually is repeating.
2. (a) Prove combinatorially $\binom{n}{1}+6\binom{n}{2}+6\binom{n}{3}=n^{3}$.
(b) Prove combinatorially $\binom{0}{k}+\binom{1}{k}+\ldots+\binom{n}{k}=\sum_{j=0}^{n}\binom{j}{k}=\binom{n+1}{k+1}$ where n, k are any fixed non-negative integers.
(c) Find a simple form for $1^{3}+2^{3}+\cdots+n^{3}$.
3. Find the generating function for each of the following sequences and restate the problems in combinatorial language.
(a) The number of collections of n balloons with a multiple of three red ones, at least 2 blue ones and no more than 5 green ones. Assume balloons of the same color are indistinguishable.
(b) The number of ways one can give n children each one balloon such that the entire set of balloons has a multiple of three red ones, at least 2 blue ones and no more than 5 green ones.
4. Prove that for any $n+1$ integers $a_{1}, a_{2}, \ldots, a_{n+1}$ there exist two of the integers a_{i} and a_{j} with $i \neq j$ such that $a_{i}-a_{j}$ is divisible by n.
5. How many ways can coins be stacked in the plane such that the bottom row consists of n consecutive coins? For example, there are five ways to do this if $n=3$:

$$
\begin{array}{ccccccc}
& 0 & & 0 & 0 & 0 & 0 \\
0 & 0 & 00 & 000 & 000 & 000
\end{array}
$$

6. Find an explicit formula for the number of cards in a card house of depth 1 and with n levels. For example, it takes 2 cards to make a small house of one level built by leaning them against each other. To build a second level, build two small houses together and put a top on it across both peaks. Then build a second small house on top.
7. (30 pts) Prove any 3 parts to Problem 35 in Chapter 1 of EC1 rated 2 or $2+$. Try each part before consulting the solutions. Additional parts count as bonus problems for additional credit.
8. Let a_{n} be the number of ways to write the positive integer n as the sum of powers of 2 , disregarding order.
(a) Find a_{n} for $n=1,2,3, \ldots, 10$
(b) Give a generating function for a_{n}.
(c) Use your answers in parts a) and b) to conjecture and prove a result comparing $a_{2 n}$ and $a_{2 n+1}$.
9. (Bonus $(20 \mathrm{pts}))$: Let b_{n} be the number of different rooted binary trees with n unlabeled leaves. Show

$$
b_{n}=\sum_{\lambda} \frac{\prod_{i=2}^{\ell(\lambda)}\left(2\left(\lambda_{i}+\cdots+\lambda_{\ell(\lambda)}\right)-1\right)}{z_{\lambda}},
$$

where the sum is over all decreasing sequences $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ which sum to n and each part λ_{i} is a power of 2 . The notation $\ell(\lambda)=k$ is the number of nonzero parts of λ, and

$$
z_{\lambda}=\left(1^{m_{0}} 2^{m_{1}} 4^{m_{2}} 8^{m_{3}} \cdots\right)\left(m_{0}!m_{1}!m_{2}!\cdots\right)
$$

if λ has m_{i} parts equal to 2^{i} for all integers $i \leq 0$.

