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1 Fields

Planned Lecture Date(s): June 21, 2023.

This course is a second course in linear algebra, and will approach things from a more theoretical perspec-
tive than a typical first course, which focuses primarily on matrices and matrix operations. In particular, I
will try my best to use as few matrices as possible, to emphasize the abstraction of linear algebra away from
the computational aspects.

Definition. A field is a set F with two binary operations, usually denoted + and · , such that

• Commutativity: a+ b = b+ a and a · b = b · a.

• Associativity: a+ (b+ c) = (a+ b) + c and a · (b · c) = (a · b) · c.

• Identity: There exists an element 0 ∈ F such that 0 + a = a for all a ∈ F , and similarly there exists an
element 1 ∈ F such that 1 · b = b for all b ∈ F .

• Inverses: For every element a ∈ F , there exists an element, denoted −a, such that a + (−a) = 0.
Similarly, for every non-zero element b ∈ F , there exists an element, denoted b−1, such that b · b−1 = 1.

• Distributivity: a · (b+ c) = a · b+ a · c.

• 0 ̸= 1.

These rules are often referred to as the field axioms. Since this resembles many number systems that we are
familiar with, we often call these operations “addition” and “multiplication”, and abbreviate them in the
usual ways (for example, we will often abbreviate a ·b to ab). Note that subtraction is addition of the inverse
(a− b = a+ (−b)), and division is multiplication by the inverse (a/b = a · b−1).

Example. The real numbers, denoted R, form a field. Other fields you may be familiar with include C, the
complex numbers, and Q, the rational numbers. However, the integers Z do not form a field, since 2 (for
example) does not have a multiplicative inverse.

The idea of a field is that it provides us a setting in which to do “numerical operations”: if we would like
to be able to add, subtract, multiply, and divide, the field axioms are the ”minimum” rules we need to do
so. In particular, in the context of linear algebra, this is frequently all we need to make our theory work.
However, fields can often look very different than the examples above.

Example. Let F5 denote the set {0, 1, 2, 3, 4} together with the usual operations of addition and subtraction,
with the caveat that all operations are taken modulo 5 (with 0 and 1 being the additive and multiplicative
identities). This means that if an operation would result in a number outside of the range 0 through 4, we
can add or subtract multiples of 5 to bring it into the range. For example, here are some computations in
F5:

• 2 + 2 = 4, as usual.

• 2 + 3 = 0, since 2 + 3 = 5, but 5 does not exist in F5, so we can instead subtract 5 to obtain 0, which is
in F5. This shows that an additive inverse of 2, denoted −2, is 3 (in this field).

• 2 · 4 = 3, since 2 · 4 = 8 and 8− 5 = 3, which is an element of F5.

• 3 · 2 = 1, since 3 · 2 = 6 and 6− 5 = 1, which is an element of F5. This shows that 2 is a multiplicative
inverse for 3.

• By commutativity, we also know that 3 + 2 = 2 + 3 = 0, so −3 = 2, and 2 · 3 = 3 · 2 = 1, so 3−1 = 2.
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Note that taking numbers modulo 5 can also be thought of as taking the remainder when dividing by 5
(e.g., 29 modulo 5 is 4, since 29 divided by 5 is 5 with remainder 4).

It turns out that field identities and inverses are actually unique, but I’ll leave this to homework (possibly)
for you to prove it.

At this point, we haven’t actually checked all of the axioms: while commutativity, associativity, distribu-
tivity, and identity are fairly straightforward to show, the existence of inverses is perhaps harder. For this
case, we can simply check that 1 · 1 = 2 · 3 = 4 · 4 = 1, but in general, this may be more difficult.

This gives us our first example of a field that is not quite what we’re used to - in fact, this field is finite!
In contrast, the fields Q, R, and C are all infinite. It turns out that for any prime number p, the above
construction will create a field Fp with the p elements {0, 1, . . . , p − 1}. These finite fields have numerous
applications in number theory, cryptography, etc.

For any field F , if we start with our multiplicative identity 1F (which I will abbreviate as 1), we can add it
to itself repeatedly.

1 + 1 + · · ·+ 1

In this sense, we can define the integer n to be the sum of 1 with itself n times. This allows us to talk about
any integer in any field! For example, in F5, the integer 8 exists, and represents whatever element of the
field that we get when we add 1 to itself 8 times.

Doing this in Q, R, or C is somewhat boring, but something weird can happen in these finite fields we’ve
constructed! In Fp, what happens if we add 1 to itself repeatedly?

1 + · · ·+ 1︸ ︷︷ ︸
p times

= p = 0

This is very unusual! In the field Fp, the integer p (and all of its multiples) is equal to 0.

Definition. We say that for a field F , the smallest number of times we can add 1 to itself to get 0 is called
the characteristic of F . If this does not occur, then we say that the characteristic of F is 0.

For example, the characteristic of Fp is p, and the characteristic of Q, R, and C are all 0. For the most part in
this class, we will focus on fields of characteristic 0, but much of the theory still works in general! Something
we have to be very careful about is that when we divide, we need to make sure to not divide by p (since
p = 0!).

Fields are also a general setting to solve equations: for example, I can ask about solutions to

x2 − 4x+ 3 = 0

and from either factoring or the quadratic formula, we know that solutions are given by x = 1 and x = 3.
However, if we are handed an equation like

x2 + 1 = 0

we know that over R, this equation has no solutions, since the square of any real number must be non-
negative. However, over C, this equation does have a solution, which is i (or −i). What about over F5? It
turns out that we have

22 + 1 = 4 + 1 = 5 ≡ 0 (mod 5)

and so this equation does indeed have a solution in F5. What about F7? Or F11? Answering the question of
when Fp has a solution to x2 +1 = 0 is beyond the scope of this course, but is an introduction to the branch
of math known as number theory.

One thing we can try is the quadratic formula, which says that for a polynomial ax2 + bx + c = 0 (with
a ̸= 0), the roots are given by

x =
−b±

√
b2 − 4ac

2a
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However, what does this equation actually mean? We know how to add, subtract, multiply, and divide,
but the square root symbol is not something that must exist in our field axioms. We interpret this symbol
to mean “what element of my field do I have to square to get the value inside?”. However, sometimes the
answer to this question is that there is no element which squares to what we want. For example, in R, if we
write

√
−1, no real number squares to −1, so the quadratic formula actually fails! We usually resolve this

implicitly by passing to the complex numbers, where we have ±i to solve our equation. This is an example
of extending our field to solve an equation, but I will not go into too much detail about this now.

Something else we should worry about is that we’re dividing by 2a. Although we require that a ̸= 0, it’s
possible that 2 = 0. What happens if char(F ) = 2?

Let’s denote polynomials with coefficients in the field F by F [x]. The fundamental theorem of algebra tells
us that if we pick any polynomial f(x) ∈ C[x], it has a root in C. However, this is very not true in R or Q, as
the polynomial

f(x) = x2 + 1

has all coefficients in Q (which is a subset of R), but as previously shown does not have any roots in Q (nor
R). A field which satisfies this property is very special.

Definition. A field F is said to be algebraically closed if any polynomial f(x) ∈ F [x] has a root in F .

Solving polynomials is generally much easier in an algebraically closed field, since solutions are guaranteed
to exist. A field F that is not algebraically closed can generally by extended to an algebraic closure, usually
denoted F , but the construction is beyond the scope of this course. For example, R = C, but Q is a very
interesting field! Can you think of an example of an element of Q which is not in R?
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2 Vector Spaces

Planned Lecture Date(s): June 23, 2023.

We now proceed to define the fundamental object of linear algebra.

Definition. A vector space over a field F is a set V together with two binary operations:

1. Addition: a map V × V → V mapping (v, w) to v + w.

2. Scalar multiplication: a map F × V → V mapping (a, v) to av.

These operations satisfy the following properties:

1. Associativity: u+ (v + w) = (u+ v) + w.

2. Commutativity: u+ v = v + u.

3. Identity: There exists an element, denoted 0⃗ ∈ V , such that v+0 = v for all v ∈ V . Note that this is an
element of V , different than 0 ∈ F .

4. Inverse: For every v ∈ V , there is an element, denoted −v, such that v + (−v) = 0⃗.

5. Compatibility: a(bv) = (ab)v, for a, b ∈ F and v ∈ V .

6. Distributivity: a(u+ v) = au+ av and (a+ b)v = av + bv.

7. 1v = v.

Elements of the vector space V are called vectors.

These axioms give us rules for what operations we are permitted to perform in a vector space. Note that a
vector is defined to be an element of a vector space - the definitions that you may be familiar with are simply
a consequence of this, as we’ll see in a moment.

In practice, many of these axioms will come for free - the important axioms to check are that addition and
scalar multiplication both land in the right place (we’ll see examples of this).

Example. From your previous linear algebra class, Rn is a vector space over the field R. In general, for
any field F , the set Fn consisting of ordered n-tuples of elements of F is a vector space, under elementwise
addition and multiplication by F .

In all of these cases, elements of the vector space are ordered lists of numbers, as you may have previously
defined them. However, we can abstract away from this idea, and create some more interesting vector
spaces.

Example. Let F [x] be the set of polynomials with coefficients in F . We can check that

1. The polynomial f(x) = 0 is the zero vector in F [x].

2. The sum of two polynomials with coefficients in F is again a polynomial with coefficients in F .

3. We can scale a polynomial by an element a ∈ F by multiplying the polynomial by a, and this again
gives us a polynomial with coefficients in F . In particular, choosing a = −1 gives an inverse.

We should also check the remaining axioms, but this can be done without much work, so I will omit the
details here. This allows us to conclude that F [x] is a vector space over F .

This example is not too fancy, since if we simply collect the coefficients of a polynomial f(x) ∈ F [x], we
can think of polynomials as ”infinite lists” of elements of F . Some other examples in this vein include
Mn×m(F ), the set of n×m matrices over a field F , as well as the set of R-valued sequences (xn). However,
we can do things that are a bit weirder.
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Example. Let C(R) be the set of all continuous functions from R to R. We can check that

1. The function f(x) = 0 is the zero vector in C(R).

2. The sum of two continuous functions f and g is continuous, thus f + g ∈ C(R).

3. For a real number a ∈ R and continuous function f , the function (af)(x) is continuous, and in partic-
ular we have −f ∈ C(R), which is the additive inverse of f .

Again, to be thorough, we should check the remaining axioms, but this can be verified in a fairly straight-
forward manner. We can then conclude that C(R) is a vector space (over R).

We can also impose conditions to ”limit” our vector spaces: for example, instead of taking all continuous
functions from R to R, we could add some constraints.

Example. Which of the following are vector spaces (under the usual addition/scalar multiplication)?

• The set of continuous functions f : R → R, with f(0) = 0.

• The set of continuous functions f : R → R, with f(0) = 1.

• The set of continuous functions f : R → R which are differentiable.

• The set of continuous functions f : R → R which are infinitely differentiable, and furthermore for
some n, the n-th derivative of f is 0.

The answer is that all of them except for the 2nd are vector spaces (why?). In fact, the last example is
precisely R[x].

Note that all of these examples are vector spaces inside the bigger vector space C(R). These are examples
of subspaces, which we will explore next class.

We also have another interesting class of examples.

Example. The field of complex numbers, C, is a vector space over itself, as we can think of it as Cn for
n = 1. However, C can also be considered a vector space over R. We check that

1. The complex number 0 is the zero vector in C.

2. The sum of two complex numbers is again a complex number.

3. We can multiply any complex number by a real number to again obtain a complex number.

We again omit the checking of the remaining axioms. This shows that C is a vector space over R!

This process generalizes to any field K which contains another field F : we can add elements of K, and we
can scale elements of K by elements of F , since F is a subset of K, so we can multiply as if everything is
in K. Note however that the field axioms of K allow us to multiply elements of K, but if we think of K
as an F -vector space, we are only allowed (under the vector space axioms) to multiply elements of K by
elements of F .

Let’s prove some things about vector spaces.

Theorem. Let V be a vector space over a field F . Then,

• The additive identity is unique.

• The additive inverse is unique.

• For any v ∈ V , we have that 0v = 0.

• For any v ∈ V , we have that −v = (−1)v.

Proof. We prove each of the above claims.
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• Suppose that a and b are both additive identities. Then, we have that

a = a+ b = b+ a = b

and thus a = b.

• Fix v ∈ V . Suppose w and w′ are both additive inverses. Then, we have that

w = w + 0 = w + (v + w′) = (w + v) + w′ = (v + w) + w′ = 0 + w′ = w′

and so w = w′.

• We have that
0v = (0 + 0)v = 0v + 0v

and adding −(0v) (the additive inverse of 0v) on both sides gives that 0 = 0v.

• We have that
0 = 0v = (1 + (−1))v = 1v + (−1)v = v + (−1)v

and so we have found an inverse for v. Since additive inverses are unique, we have that −v = (−1)v.

We will often be sloppy and use 0 to denote both 0 ∈ F as well as 0 ∈ V , but remember that these are
different things.

The intuition to take away from vector spaces is that they are an object in which we can add and scale. We’ll
see that despite all these examples looking very different, the operations of addition and scalar multiplica-
tion force structure upon our vector spaces, which we will explore in this class.
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3 Building New Vector Spaces out of Old Ones

Planned Lecture Date(s): June 26, 2023.

If we start with a vector space V over a field F , there are lots of ways we can create new ones! One such
way is by taking a smaller vector space inside V .

Definition. A vector subspace of V is a subset W ⊂ V which is itself a vector space over F , under the same
operations of addition and scalar multiplication in V .

Example. Let’s look at some easy examples of subspaces.

• Let V be a vector space. Then, the set {0} is a subspace of V , known as the zero subspace.

• Let V be a vector space. Then, the entire space V is a subspace of V .

• Let V = Fn, and let Wi be the set
Wi = {x⃗ ∈ Fn : xi = 0}

for all 1 ≤ i ≤ n. Then, Wi is a subspace of V .

Intuitively, we think of Wi as ”being” Fn−1, since it’s as if we just throw out the i-th coordinate. Geometri-
cally, we can picture it as the plane z = 0 in R3, which we think of as essentially being R2. It turns out that
these vector spaces are isomorphic, but we won’t define what that means until a little bit later.

Example. Let V = R[x], and let W be the set of polynomials f ∈ R[x] with f(0) = 0. Then, W is a subspace
of V .

Since the operations are inherited from V , if we want to check if W ⊂ V is a vector space, most of the
axioms are also inherited from V . The most important thing to check is that we can’t ”leave” W using our
operations (in other words, W is closed under addition and scalar multiplication).

Theorem. Let V be a vector space, and let W ⊂ V be a nonempty subset. Then, W is a subspace of V if and
only if for every v, w ∈ W and c ∈ F , we have that cv + w ∈ W .

Proof. Suppose W is a subspace. Then, cv+w ∈ W since W is closed under addition and scalar multiplica-
tion.

Suppose that cv + w ∈ W for all v, w ∈ W and c ∈ F . Since W is nonempty, choose v ∈ W , and so
(−1)v + v = 0 ∈ W . Then, choosing c = 1 shows that W is closed under vector addition, and choosing
w = 0 shows that W is closed under scalar multiplication. Note additionally that −v = (−1)v, so choosing
c = −1 shows that W has additive inverses. The remaining axioms are inherited from the analogous axioms
in V .

This gives us a convenient way to construct subspaces: given a larger vector space V , we can construct a
subspace W simply by imposing a condition, and checking that it is preserved in the above manner.

Example. Let V be the set of all functions from R to R. Let W = C(R) be the set of continuous functions.
Then, W is a subspace of V .

Proof. Let c ∈ R, and f, g ∈ C(R). Then, the function cf + g is continuous (from your favorite real analysis
textbook/class). Thus, C(R) is a vector subspace of V .

There is a bit of a subtlety here: if W is a subspace of V , we know that both V and W have additive
identities, denoted 0V and 0W . However, a priori, these elements need not be the same.

Theorem. Let W be a subspace of V . Then, 0W = 0V .

Proof. Fix w ∈ W . Then, w + 0V = w, since w and 0V are both elements of V . Since w ∈ W was arbitrary,
0V is an identity element for W . However, since we have proven that the additive identity is unique, we
conclude that 0W = 0V .
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Theorem. Let W1,W2 ⊂ V be subspaces of V . Then, W1 ∩W2 is a subspace of V .

Proof. Since 0 ∈ W1 and 0 ∈ W2, 0 ∈ W1 ∩ W2, so W1 ∩ W2 is nonempty. Fix c ∈ F , and v, w ∈ W1 ∩ W2.
Then, v and w are in both W1 and W2. Thus, we have that cv + w ∈ W1 since v, w ∈ W1, and similarly
cv + w ∈ W2 since v, w ∈ W2. Thus, cv + w ∈ W1 ∩W2. We conclude that W1 ∩W2 is a subspace of V .

We can extend this proof to arbitrary intersections: that is, if {Wi}i∈I are a collection of subspaces of V , then
the intersection

⋂
i∈I

Wi is also a subspace of V . If we start with two subspaces W1,W2 ⊂ V , we can also try

to put these vector spaces together.

Definition. Let W1,W2 ⊂ V be two subspaces. Then, the sum of W1 and W2, denoted W1+W2, is given by

W1 +W2 = {w1 + w2 |wi ∈ Wi}

where the elements are sums of elements in W1 and W2.

Theorem. We prove some facts about sums of vector spaces. Let W1,W2 ⊂ V be subspaces. Then,

• W1 +W2 is a subspace of V .

• W1,W2 ⊂ W1 +W2.

• W1 +W2 is the smallest (under containment) subspace of V which contains both W1 and W2.

Proof. We prove these results.

• Since V is closed under addition, W1 +W2 ⊂ V , and furthermore 0 = 0+ 0, so W1 +W2 is nonempty.
Let c ∈ F , and let v, v′ ∈ W1 +W2. Write v = w1 + w2 and v′ = w′

1 + w′
2. Then, we have that

cv + v′ = c(w1 + w2) + (w′
1 + w′

2) = (cw1 + w′
1) + (cw2 + w′

2)

and since W1 and W2 are subspaces, this is a sum of elements in W1 and W2 respectively, so cv + v′ ∈
W1 +W2.

• For any w ∈ W1, we can write w = w + 0, so w ∈ W1 +W2 (and analogously for W2).

• Let W be the smallest subspace of V which contains both W1 and W2, defined to be

W =
⋂
i∈I

Vi

where I is some indexing set, and the set {Vi}i∈I contains all subspaces of V which contain W1 and
W2. Then, for any w = w1 + w2 ∈ W1 + W2, we have that w1, w2 ∈ Vi, so w ∈ Vi, and since Vi was
arbitrary, we have that w ∈

⋂
i∈I

Vi = W . This shows that W1 +W2 ⊂ W . Since W1 +W2 is a subspace

which contains W1 and W2, we have that for some j ∈ I , W1 +W2 = Vj , and so W ⊂ Vj = W1 +W2.
This shows that W = W1 +W2, as desired.

We can extend this process to the sum of any finite number of vector spaces, but passing to infinitely many
may result in some issues, so we ignore this case for now. Summing vector spaces is not always the nicest
operation, because although elements are defined as sums of vectors of the summands, this decomposition
is not always unique.

Example. Fix a field F , and let V = F 3. As before, write

Vi = {x⃗ ∈ V : xi = 0}
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Then, let W = V1 + V3. Note then that

v =

1
1
1

 =

0
1
1

+

1
0
0

 =

0
0
1

+

1
1
0


and so we have written v in two ways as the sum of a vector from V1 and a vector from V3. This is due to
the fact that we could move the 1 in the middle entry into either component, which we can mathematically
indicate as 0

1
0

 ∈ V1 ∩ V3

to say that this ”choice” can be absorbed into either V1 or V3.

This is a somewhat undesirable property of sums of vector spaces, as we’d prefer if our decompositions are
unique.

Theorem. Let V be a vector space over a field F , and let W1,W2 ⊂ V be subspaces. The following are
equivalent.

1. If 0V = w1 + w2 with w1 ∈ W1 and w2 ∈ W2, then w1 = w2 = 0.

2. Every vector w ∈ W1+W2 has a unique representation as w = w1+w2, where w1 ∈ W1 and w2 ∈ W2.

3. W1 ∩W2 = {0}.

When this is the case, we say that the sum W1 +W2 is a direct sum, and denote it W1 ⊕W2.

Proof. We prove these equivalences.

• (1 ⇒ 2) Fix w ∈ W1 +W2, and suppose we can write w = v1 + v2 = w1 +w2, where vi, wi ∈ Wi. Then,
we have that

0 = w − w = (v1 + v2)− (w1 + w2) = (v1 − w1) + (v2 − w2)

Since vi − wi ∈ Wi, we have written 0 as a sum of a vector in W1 together with a vector in W2. Thus,
by assumption, vi − wi = 0, so vi = wi, and this decomposition is unique, as desired.

• (2 ⇒ 3) Fix v ∈ W1 ∩W2. Then, we can write

v = v + 0 = 0 + v

and so if v ̸= 0, this provides two different decompositions of v into a sum of elements of W1 and W2.
Thus, v = 0, as desired.

• (3 ⇒ 1) Let 0V = w1+w2 with wi ∈ Wi. Since 0V ∈ W1 and 0V ∈ W2, and 0V = w1+w2, we can write

0V − w2 = w1

Then, both terms on the left are in W2, and thus their difference must also. We therefore have that
w1 ∈ W2, and thus w1 ∈ W1 ∩W2 = {0}, so w1 = 0. The argument for w2 is analogous.

Example. Here are some examples of direct sums.

• Fn is the direct sum of the subspaces

Fn =

n⊕
i=1

{x⃗ ∈ Fn : xj = 0 ∀ j ̸= i}

where each component can be thought of as the i-th entry of the vector.
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• F [x] can be written as

F [x] = {a0 + a2x
2 + · · ·+ a2nx

2n : ai ∈ F} ⊕ {a1 + a3x
3 + · · ·+ a2n+1x

2n+1 : ai ∈ F}

where the polynomial is split into odd and even degrees. Note that the odd degree component does
indeed contain 0, since we can choose each ai = 0.

• C(R) can be written as a direct sum

C(R) = {f ∈ C(R) : f(−x) = f(x)} ⊕ {f ∈ C(R) : f(−x) = −f(x)}

and the construction is left as an exercise.

Direct sums are the ”nicest” type of sums that we can have, and they provide us a construction to ”glue
together” two subspaces into a larger subspace, provided that the subspaces are disjoint (except for 0).
We can emulate this construction for two arbitrary vector spaces, not necessarily contained within some
common vector space (which are ”automatically” disjoint).

Definition. Let V,W be F -vector spaces. Then, we can define the direct sum of V and W to be the vector
space

V ⊕W = {(v, w) : v ∈ V,w ∈ W}
under the addition and scalar multiplication rules

(v1, w1) + (v2, w2) = (v1 + v2, w1 + w2) c(v, w) = (cv, cv)

and one can check that this indeed forms a vector space. Note that instead of actually adding the vectors v
and w, which we cannot do since they live in different vector spaces, we just keep track of the ordered pairs
(and intuitively think of them as a sum).

One other way we can create new vector spaces from old ones is through taking quotients. This process is
a little bit abstract, so I will defer much of the details to homework.

Definition. An equivalence relation on a set S is a set T ⊂ S × S which satisfies the following properties.

• Reflexivity: (x, x) ∈ T for all x ∈ S.

• Symmetry: (x, y) ∈ T if and only if (y, x) ∈ T , for all x, y ∈ S.

• Transitivity: If (x, y) ∈ T and (y, z) ∈ T , then (x, z) ∈ T for all x, y, z ∈ S.

If (x, y) ∈ T , we write x ∼ y. We denote by [x] the equivalence class of x, meaning

[x] = {y ∈ S : x ∼ y}

The idea is that an equivalence relation tells us when two things are ”similar”, and so we treat them as the
same object ”up to equivalence” In the context of vector spaces, we’ll see that if we choose our equivalence
relation appropriately, the resulting set of classes still forms a vector space.

Definition. Let V be a vector space over F , and let W ⊂ V be a subspace. We define an equivalence relation
on V via the rule x ∼ y if x− y ∈ W . Then, the set of equivalence classes of vectors under this equivalence
relation form an F -vector space, under the addition and scalar multiplication given by

[v] + [w] = [v + w] c[v] = [cv]

We denote the quotient space V/W . Note that we can naturally think of any element v ∈ V as an element
of V/W by considering [v].

There are many details to check here to ensure that this does indeed form a vector space, which you will do
on homework.

Example. Let V = Fn, and let W be the subspace where all entries are 0 except for the n-th coordinate.
Then, two vectors v1, v2 ∈ V are the same in V/W ([v1] = [v2]) if v1 − v2 ∈ W . Thus, v1 and v2 must
agree in every coordinate except for the n-th. Therefore, the ”distinct” vectors that can arise in V/W are in
correspondence with the distinct entries in the first n− 1 coordinates (and thus ”looks like” Fn−1).
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4 Linear Independence and Span

Planned Lecture Date(s): June 28, 2023.

We’ll use the structure that we’ve developed about vector spaces and subspaces to define some important
notions.

Definition. Let V be a vector space over F , and let S = {v1, . . . , vn} be a collection of vectors in V . A linear
combination of the vectors of S is a sum of the form

n∑
i=1

civi = c1v1 + c2v2 + · · ·+ cnvn

where each ci ∈ F . Note that by convention, the empty sum is 0⃗.

Given a set of vectors S = {v1, . . . , vn}, we can examine what vectors we can ”create” from using only the
vectors in S, together with our vector space operations.

Definition. Let V be a vector space over F , and let S = {v1, . . . , vn} be a collection of vectors in V . The
span of S, or the span of {v1, . . . , vn}, is the set

span(S) = span(v1, . . . , vn) =

{
n∑

i=1

civi : ci ∈ F

}
consisting of all linear combinations of vectors in S.

Theorem. For any set of vectors S ⊂ V , the span of S is a vector subspace of V .

Proof. Since the empty sum is a linear combination of elements of S, we have that 0 ∈ span(S), so span(S)
is not empty. We can then check that for c ∈ F and v, w ∈ span(S), the vector cv + w is also a linear
combination of elements of S.

Example. Consider the space

W = span

1
0
0

 ,

0
1
0

 ⊂ F 3

This consists of the space of all vectors with 0 in the third coordinate, and is a subspace of F 3.

Example. If S consists of only one vector, call it v, then

span(S) = span(v) = {cv : c ∈ F}

is simply the set of all vectors we can obtain by scaling v. Then, we have that

span(v1, . . . , vn) = span(v1) + span(v2) + · · ·+ span(vn)

where the sum is taken as vector subspaces of V . The span of S is the smallest subspace of V which contains
all the vectors in S.

Intuitively, we think of the vectors in S as our ”allowed directions”: we can move however we want, but
only in the given directions. If S ”has enough directions”, then we can get to every vector in V , and this is
a very special condition.

Definition. Let V be a vector space over F , and let S = {v1, . . . , vn} be a collection of vectors in V . We say
that S spans V if

span(S) = span(v1, . . . , vn) = V

Equivalently, S spans V if every vector v ∈ V can be written (not necessarily uniquely) as

v =

n∑
i=1

civi = c1v1 + · · ·+ cnvn

where each ci ∈ F . When this is the case, we say that S is a spanning set for V .

12



Note that even if a set S does not span V , it still spans some vector subspace of V , and one such space that
it spans is span(S) (by definition).

Another notion that we can associate to a set of vectors is the following.

Definition. Let V be a vector space over F , and let S = {v1, . . . , vn} be a collection of vectors in V . We say
that S is linearly dependent if there exists ci ∈ F , not all of which are 0 (such a linear combination is called
non-trivial), such that

n∑
i=1

civi = 0

If no such collection of ci exist, we say that S is linearly independent. Such a linear combination is called
a linear dependence.

The first thing to emphasize is that being linearly independent (or dependent) is a property of a collection
of vectors, rather than any individual vector within the set. We can prove some properties of linearly
independent sets.

Theorem. Let V be a vector space over F , and let S = {v1, . . . , vn} be a collection of vectors in V .

• If S is linearly dependent, and S′ ⊃ S, then S′ is linearly dependent.

• If S is linearly independent, and S′ ⊂ S, then S is linearly independent.

• If 0 ∈ S, then S is linearly dependent.

• Every vector in span(S) has a unique representation as a linear combination of vectors in S.

Proof. We prove the above claims.

• Suppose S is linearly dependent. Then, we can write

n∑
i=1

civi = 0

with some cj ̸= 0. Then, this is also a linear combination of elements of S′, with the coefficients on the
elements of S′ being all 0. Thus, we have found a linear dependence in S′, so S′ is linearly dependent.

• Suppose S is linearly independent, but S′ ⊂ S is not. Suppose S′ has m < n elements, and without
loss of generality, reorder S so that S′ = {v1, . . . , vm}. Then, we can write

m∑
i=1

civi = 0

with some cj ̸= 0. Then, this is also a linear combination of elements of S, with the coefficnets on the
elements of S being all 0. Thus, we have found a linear dependence in S, which is a contradiction. We
conclude that S′ must be linearly independent.

• Without loss of generality, suppose v1 = 0. Then, the linear combination with c1 = 1 and ci = 0 for all
i ̸= 1 is a non-trivial linear combination which sums to 0, so S is linearly dependent.

• Fix v ∈ span(S), and suppose we can write v in two ways, as follows:

v =

n∑
i=1

aivi =

n∑
i=1

bivi

Then, we have that

0 = v − v =

n∑
i=1

(ai − bi)vi

and thus ai − bi = 0 for all i.

13



Our intuition should be that a linear dependence occurs when our set of vectors becomes ”redundant”: we
have too many vectors for each one to provide ”unique” information. We can validate this intuition using
the following.

Theorem. Let V be a vector space over F , and let S = {v1, . . . , vn} be a collection of vectors in V . Suppose S
is linearly dependent. Then, there exists some 1 ≤ j ≤ n such that vj can be written as a linear combination
of S\{vj}.

Proof. Since S is linearly independent, we can write

0 =

n∑
i=1

civi

for some cj ̸= 0. Then, subtracting, we have that

cjvj = −
n∑

i=1
i ̸=j

civi

vj = − 1

ci

n∑
i=1
i ̸=j

civi

and so we have produced such a linear combination. Note that we crucially here divide by cj , which is only
possible because cj ̸= 0, so it has a multiplicative inverse in the field F .

Note that this theorem does not guarantee that every vector can be written as a linear combination of the
others, only that one such vector exists.

Example. In F 2, we have the vectors {(
1
0

)
,

(
1
1

)
,

(
0
1

)}
and here any of the three vectors can be written as a linear combination of the other two. However, if we
instead have the vectors {(

1
0

)
,

(
0
1

)
,

(
0
2

)}
then the first cannot be written as a linear combination of the second and third (this statement is still true
even if char(F ) = 2).

Intuitively, we should think of span and linear independence as ”opposite” notions: if S is linearly inde-
pendent, we cannot have too many vectors, or they will become redundant, whereas if S is a spanning set,
we cannot have too few vectors, or we do not have enough directions to go.

If V is a vector space over a field F , and S = {v1, . . . , vn} is a set of vectors in V , one can ask the question:
if I choose a vector v ∈ V , how can I write it as a linear combination of vectors in S?

• If S is linearly independent, then we can write v in at most one way: if v ∈ span(S), we can write it as a
linear combination of elements of S, and by our result above, this is unique. However, if v /∈ span(S),
we cannot write v as a linear combination of elements of S.

• If S is a spanning set for V , then we can write v in at least one way: since S spans V , every element of
V is a linear combination of elements of S, but we may be able to write down several different linear
combinations which sum to v.

However, if S is both linearly independent and a spanning set for V , this is a very special condition! We’ll
explore this in the next lecture.
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5 Basis and Dimension

Planned Lecture Date(s): June 30, 2023.

From last lecture, we saw that if a set of vectors S is both linearly independent and a spanning set for V ,
then every vector in V can be written in exactly one way (uniquely) as a linear combination of vectors in S.
This condition is very special, so we’ll give it a name.

Definition. Let V be a vector space over F , and let S = {v1, . . . , vn} be a collection of vectors in V . If S is
both linearly independent and a spanning set for V , then S is said to be a basis for V .

We should think of our basis as our ”coordinates” on our vector space: every vector has a coordinate
representation, and furthermore this representation is unique.

Example. In Fn, we have a standard basis, denoted by {ei}1≤i≤n, where ei is the vector with a 1 in the i-th
coordinate, and a 0 in every other coordinate. Any vector can then be uniquely written as

a1
a2
...
an

 = a1


1
0
...
0

+ a2


0
1
...
0

+ · · ·+ an


0
0
...
1


Example. Let F [x]≤n denote the polynomials of degree at most n. Then, the set {1, x, x2, . . . , xn} forms a
basis for F [x]≤n. However, we can also choose an alternative basis, perhaps {1, x−1, (x−1)2, . . . , (x−1)n}.
For example, we can write

1 + x2 = 2 + 2(x− 1) + (x− 1)2

and this allows us to express the same element of F [x]≤n in two different bases. Note that the coefficients
are different, but they sum to the same element.

Finding bases is incredibly useful, as we can use them to do computations (as we’ll see later on in the
course). However, there is a certain elegance to proofs which do not require us to choose a basis, and
mathematicians generally prefer these proofs as they require less ”arbitrary choice”. We’ll often say that a
proof or argument is canonical if choosing a basis is not necessary.

We’ll now work towards proving some very important properties of bases.

Lemma. (Steinitz Exchange Lemma) Let V be a vector space over F , and let S = {v1, . . . , vn} and T =
{w1, . . . , wm}, with S linearly independent and T spanning V . Then, the following hold:

• n ≤ m.

• After possibly reordering T , the set {v1, . . . , vn, wn+1, . . . , wm} spans V .

Proof. We induct on n. When n = 0, we have that both 0 ≤ m, and the set T spans V by assumption.

Suppose the claim holds for n − 1. By the inductive hypothesis, after possible reordering of T , the set
{v1, . . . , vn−1, wn, . . . , wm} spans V . If n > m, the given set is {v1, . . . , vm}, and vn ∈ V is in the span of this
set, violating the linear independence of S. This shows that n ≤ m. We can then write

vn =

n−1∑
i=1

civi +

m∑
i=n

ciwi

We cannot have ci = 0 for all i ≥ n, or this would write vn as a linear combination of {v1, . . . , vn−1}, but S
is assumed to be linearly independent. Thus, some cj ̸= 0 for n ≤ j ≤ m, so without loss of generality, let
j = n (up to reordering). Then, we have that

wn =
1

cn

(
vn −

n−1∑
i=1

civi −
m∑

i=n+1

ciwi

)
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and so wn ∈ span(v1, . . . , vn−1, vn, wn+1, . . . , wm), and so we have that

V = span(v1, . . . , vn−1, wn, wn+1, . . . , wm) ⊂ span(v1, . . . , vn−1, vn, wn+1, . . . , wm) ⊂ V

and thus we have that span(v1, . . . , vn−1, vn, wn+1, . . . , wm) = V as desired.

This gives us a very important result.

Theorem. Let V be a vector space over F , and let S = {v1, . . . , vn} and T = {w1, . . . , wm}. Suppose S and
T are both bases for V . Then, n = m.

Proof. Apply the Steinitz Exchange Lemma to S and T to obtain n ≤ m, and again to T and S to obtain
m ≤ n.

This shows that if our bases are of finite length, they must be the same length! We therefore make the
following definition.

Definition. Let V be a vector space with basis S = {v1, . . . , vn}. The dimension of V , denoted dim(V ), is
equal to n, the length of one (and by the above theorem, any) basis. If V does not possess a finite basis, we
say that V is infinite-dimensional.

We now have a way to quantify how large our vector spaces are.

Example. Let’s think about some vector spaces we’re familiar with.

• The vector space Fn is n-dimensional, with standard basis {e1, . . . , en}.

• The vector space F [x]≤n is (n+ 1)-dimensional, with a basis given by {1, x, . . . , xn}.

• The R-vector space C is two dimensional, given by basis {1, i}.

• The vector space F [x] has a basis, given by {1, x, x2, . . . }. However, this basis is infinite - this does not
prove that F [x] does not possess a finite basis (and by consequence be finite dimensional), but F [x] is
indeed infinite-dimensional.

Another consequence of the Steinitz Exchange Lemma is the following.

Theorem. Let V be a finite-dimensional vector space of dimension n. Then, we have that

• Any subset P ⊂ V with more than n vectors is linearly dependent.

• Any subset Q ⊂ V with fewer than n vectors cannot span V .

Proof. We prove both statements using Steinitz Exchange Lemma. Fix a basis B for V .

• If P is linearly independent, choose S = P and T = B. This is a contradiction, since we then must
have |P | ≤ |B| = n.

• If Q is a spanning set, choose S = B and T = Q. This is a contradiction, since we then must have that
|Q| ≥ |B| = n.

Another important property of bases is the following.

Theorem. Let V be a finite dimensional vector space, and let S = {v1, . . . , vn} be a linearly independent
set. Then, we can find a basis T of V , with S ⊂ T (we say that we can ”complete” S to a basis of V ).
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Proof. If S spans V , then S is a basis for V , and we are done. Otherwise, pick w ∈ V \ span(S). We claim
that S ∪ {w} is linearly independent. Suppose that S ∪ {w} is linearly dependent. Then, we have that

0 = c0w +

n∑
i=1

civi

with not all ci = 0. Notice that if c0 = 0, we have produced a non-trivial linear combination of the vi which
give 0, which cannot occur as the vi are linearly independent. Thus, we have that c0 ̸= 0, so we can write

w = − 1

c0

(
n∑

i=1

civi

)

and so w ∈ span(S), which is a contradiction. Thus, the set S ∪ {w} must be linearly independent. We can
repeat this process finitely many times unless |S| > dim(V ), at which point our previous theorem tells us
that S is linearly dependent, which is a contradiction. Thus, we must be in the case where S spans V , and
thus S is a basis.

This theorem allows us to prove several results.

Theorem. Let V be a finite dimensional vector space, and let W ⊂ V be a subspace.

• dim(W ) ≤ dim(V )

• Every basis for W can be completed to a basis for V .

Proof. Fix a basis B for W . Then, B is linearly independent (both as a subset of W and as a subset of V ), so
we can extend it to a basis for V . Extending our basis adds a non-negative number of elements to our basis,
so dim(W ) ≤ dim(V ).

Example. Let V be a vector space over F , and let W1,W2 ⊂ V be subspaces.

• If the sum is direct, dim(W1 ⊕W2) = dim(W1) + dim(W2).

• dim(W1 +W2) = dim(W1) + dim(W2)− dim(W1 ∩W2).

• dim(V/Wi) = dim(V )− dim(Wi).

The second and third require some work to prove, but for the first, we can simply concatenate bases for W1

and W2.

Finally, a few words about infinite dimensional vector spaces: many of the results that we’ll prove are
easiest in the finite dimensional case, so we’ll generally stick to these situations. However, we do have some
examples of infinite-dimensional vector spaces, such as F [x], C(R), or R as a Q-vector space. Showing that
every finite dimensional vector space has a basis is not hard, as we can simply apply the above theorem to
an empty set of vectors. However, showing that every (not necessarily finite dimensional) vector space has
a basis is much more difficult (and in fact equivalent to the axiom of choice!).
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6 Linear Transformations

Planned Lecture Date(s): July 3, 2023.

One of the perspectives that we take in mathematics is that once we understand a certain type of object,
we should understand functions between these objects. In our case, our objects are vector spaces, and our
functions are linear transformations.

Definition. Let V,W be F -vector spaces. A linear transformation T is a function T : V → W satisfying the
following properties:

• Superposition: T (v1 + v2) = T (v1) + T (vw) for all v1, v2 ∈ V .

• Proportionality: T (cv) = cT (v) for all c ∈ F and v ∈ V .

We will sometimes refer to linear transformations as linear maps, and a function which satisfies these
properties is said to be linear. The space V is referred to as the domain, and the space W is referred to as
the codomain.

The idea is that a vector space is a set together with certain additional structure, namely addition and scalar
multiplication, so our functions between vector spaces should ”preserve” this structure. One way you can
think of this property is that for either addition or scalar multiplication, we can perform the operation either
before or after applying our linear transformation, and we will get the same result.

One way to check if a transformation is linear is the following (hopefully familiar) result.

Theorem. Let V,W be F -vector spaces, and let T : V → W be any function. Then, T is a linear transforma-
tion if and only if T (cv + w) = cT (v) + T (w) for all c ∈ F and v, w ∈ V .

Proof. Choosing c = 1 gives superposition, and choosing w = 0 gives proportionality.

Example. We explore some examples of linear transformations.

• Let V be an F -vector space. Then, the identity map Id : V → V which takes any v ∈ V to itself is a
linear map.

• Let V,W be F -vector spaces. Then, the zero map 0 : V → W which takes any v ∈ V to 0 ∈ W is a
linear map.

• Let V = Fn and W = Fm. Then, any m× n matrix is a linear map.

Let’s prove a property of linear maps.

Theorem. Let V,W be F -vector spaces, and let T : V → W be a linear map. Then, T (0) = 0.

Proof. We have that
T (0) = T (0 + 0) = T (0) + T (0)

and subtracting T (0), we have that T (0) = 0 as desired.

It turns out that if our vector spaces are finite-dimensional, then matrices are, in some sense, the only linear
maps that we can have, and we will build towards this result.

Suppose V and W are finite-dimensional F -vector spaces. If we pick a basis B = {v1, . . . , vn} for V , then
we can make the following observation: for any v ∈ V , we can write

v =

n∑
i=1

civi
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and furthermore the choice of ci are unique. Then, if T : V → W is a linear map, we have that

T (v) = T

(
n∑

i=1

civi

)

=

n∑
i=1

T (civi)

=

n∑
i=1

ciT (vi)

This shows the following important result: the value of T on any vector v ∈ V is fully determined by T (vi)
for each vi in B! In other words, in order to define a linear map T : V → W , it suffices to decide where we
would like to map each vi, and so we only need to make n choices. Once we have done so, the value of T
on any vector in V is determined. This is the power that comes from the structure of linear maps between
vector spaces!

Example. Let D : R[x]≤n → R[x]≤n be the map that sends f(x) to f ′(x) (i.e. the derivative map). One can
check that this map is indeed linear, and furthermore R[x]≤n has the basis {1, x, x2, . . . , xn}. We see that

D(xn) = nxn−1

and this definition is enough to compute D(f(x)) for any f(x) ∈ R[x]≤n.

Now, let’s suppose that we’ve fixed a basis BV = {v1, . . . , vn} on V , and a basis BW = {w1, . . . .wm} on W .
Then, for each vi, we can write

T (vi) = c1iw1 + · · ·+ cmiwm

and we can implicitly think of this as represented by the vector c1
...
cm

 ∈ Fm

If we package this into a matrix, it looks like the following.
c11 c12 · · · c1n
c21 c22 · · · c2n

...
...

. . .
...

cm1 cm2 · · · cmn


and we see that this matrix acting on the vector ei (which has a 1 in the i-th component, and 0 elsewhere)
gives precisely the vector with cij in the j-th component, and so this matrix does indeed send each vi to
the prescribed position of T (vi), as desired. By our above work, we see that this completely determines
the linear transformation. For this reason, we think of choosing bases as picking coordinates, and we will
sometimes refer to this process in this way.

We therefore make the following observation: a linear transformation T is a linear function between two F -
vector spaces V and W , and if we choose bases for both V and W , then in these chosen coordinates, T takes
the form of a matrix, and acts on vectors under standard matrix multiplication. Furthermore, the columns
of the matrix tell us exactly where each basis vector is sent under T . We’ll go back and forth between the
matrix perspective and the more abstract perspective, to see things both ways.

When we choose coordinates, we are implicitly choosing an isomorphism of V to Fn and W to Fm, and we
will make this rigorous later on once we’ve defined isomorphisms.

We will often denote the set of linear maps from V to W (as vector spaces over F ) using the notation
HomF (V,W ), often suppressing the F when the context is clear. If V = W , we will use End(V ) to denote
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Hom(V, V ). The symbol ”Hom” is short for ”homomorphism”, which is a general mathematical term used
to describe structure-preserving functions.

We conclude this section by defining some properties that linear maps can have.

Definition. Let V,W be F -vector spaces, and let T : V → W be a linear transformation. We say that T is...

• ...injective if for all v1, v2 ∈ V , T (v1) = T (v2) implies v1 = v2.

• ...surjective if for all w ∈ W , there exists v ∈ V with T (v) = w.

• ...bijective if T is both injective and surjective.

Intuitively, we want to think of an injective map which doesn’t take two different things and send them
to the same thing, and a surjective map as one which hits everything in the codomain. In your first linear
algebra class, you’ve probably seen ”injective” as one-to-one, and ”surjective” as onto. These are also
acceptable names, but the nomenclature we use here generalizes to other algebraic objects.
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7 Kernel, Image, and the First Isomorphism Theorem

Planned Lecture Date(s): July 5, 2023 - July 7th, 2023.

Given a linear map T : V → W , we can ask several different questions about it: is T injective or surjective?
How can we tell? Let’s define some terms.

Definition. Let V,W be F -vector spaces, and let T : V → W be a linear map. The kernel of T , denoted
ker(T ), is given by

ker(T ) = {v ∈ V |T (v) = 0} ⊂ V

Furthermore, the image of T , denoted im(T ), is given by

im(T ) = {w ∈ W | ∃ v ∈ V such that T (v) = w} ⊂ W

We refer to dim(im(T )) as the rank of T , and dim(ker(T )) as the nullity of T .

The first thing to notice is that if we choose coordinates and represent T as a matrix M , then ker(T ) corre-
sponds precisely to the null space of M , and im(T ) corresponds to the range, or column space of M , and
furthermore the rank and nullity correspond to the dimensions of these spaces. However, we can refer to
these spaces entirely independently of the matrix representation, as we have done above.

Theorem. Let V,W be F -vector spaces, and let T : V → W be a linear map. Then, we have that

• ker(T ) is a subspace of V .

• im(T ) is a subspace of W .

Proof. We prove these statements.

• Note that T (0) = 0, so 0 ∈ ker(T ), and so ker(T ) is nonempty. Suppose c ∈ F , and v, w ∈ ker(T ) ⊂ V .
Then, we have that

T (cv + w) = cT (v) + T (w) = c0 + 0 = 0

and so cv + w ∈ ker(T ), so ker(T ) is a subspace of V .

• Note that T (0) = 0, so 0 ∈ im(T ), and so im(T ) is nonempty. Suppose c ∈ F , and v, w ∈ im(T ). Then,
there exists v′, w′ ∈ V with T (v′) = v and T (w′) = w. We therefore have that

T (cv′ + w′) = cT (v′) + T (w′) = cv + w

and so cv + w ∈ im(T ). Thus, im(T ) is a subspace of V .

This shows that these objects we’ve defined are indeed subspaces, and are natural objects to consider.

Theorem. Let V,W be F -vector spaces, and let T : V → W be a linear map. Then, we have the following.

1. T is injective if and only if ker(T ) = {0}.

2. T is surjective if and only if im(T ) = W .

3. T is bijective if and only if both ker(T ) = {0} and im(T ) = W .

Proof. We prove each of these statements.

1. Suppose T is injective. Then, we have proved that T (0) = 0, so if v ∈ ker(T ), then T (v) = 0 = T (0),
so v = 0.

Suppose ker(T ) = 0, and suppose T (v1) = T (v2) for some v1, v2 ∈ V . Then, we have

0 = T (v1)− T (v2) = T (v1 − v2)

and so v1 − v2 ∈ ker(T ) = {0}. Thus, v1 = v2, as desired.
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2. By definition, T being surjective is precisely the statement that im(T ) = W .

3. Combining the above two statements gives the desired result.

We therefore conclude that checking if a linear map is injective, surjective, or bijective is equivalent to
checking the appropriate condition on the kernel or image. Thus, we can choose coordinates to express
our map in its matrix representation, and from our previous linear algebra class, we have methods of
determining the null space and column space of such a matrix.

It is a very special condition when a linear map is bijective, as we can attempt to construct an inverse.
Suppose T : V → W is a bijective linear map, and we would like to invert T with some function S : W → V .
This means that for any v ∈ V , S(T (v)) = v, and similarly for any w ∈ W , T (S(w)) = w. How would we
go about doing this? Let’s try to define S first.

Fix w ∈ W . We’d like to decide what S(w) is: since T is surjective, there exists some v ∈ V with T (v) = w,
and furthermore since T is injective, this v is unique. Thus, we assign S(w) to be this v. It remains to check
that the map S does indeed provide an inverse for T , and furthermore, the inverse function S is linear! A
priori, we have no reason to expect this to be true, but this is indeed the case, and you will prove this on
homework. Since we can construct an inverse map when T is bijective, we will often times refer to bijective
linear maps as invertible.

If we can find a bijective linear map T between two F -vector spaces V and W , then any calculations we
would like to carry out in V , we could instead map over to W via T , do our calculations in W , and map
back to V using T−1. In this sense, V and W are ”the same” vector space, since anything we’d like to do in
V we can do in W , and vice versa. This leads us to a definition.

Definition. Let V and W be two F -vector spaces. Then, V and W are said to be isomorphic if there exists
a bijective linear map T : V → W . We say that T (alternatively, T−1) is an isomorphism between V and W .

In essence, two vector spaces are isomorphic if the tools of linear algebra cannot tell the difference between
the two: anything we do in either V or W can be moved to the other via either T or T−1. We prove an
important property of bijective maps.

Theorem. Let V,W be finite-dimensional F -vector spaces, and let T : V → W be a linear map. Then, T is
invertible if and only if T sends bases of V to bases of W .

Proof. Suppose T is invertible. Fix a basis {v1, . . . , vn} for V , and examine {T (v1), . . . , T (vn)}. Suppose we
have that

0 = c1T (v1) + · · ·+ cnT (vn) = T (c1v1 + · · ·+ cnvn)

Since T is injective, each ci = 0, showing linear independence. Similarly, fix w ∈ W . Since T is surjective,
we can find v ∈ V with T (v) = w, so

v = c1v1 + · · ·+ cnvn

and mapping everything forward by T and applying linearity shows that w is in fact in the span, so this set
is a spanning set for W , and therefore a basis.

Suppose T sends bases to bases. Fix a basis {v1, . . . , vn} for V , and by assumption we have that {T (v1), . . . , T (vn)}
is a basis for W . Then, suppose some v = c1v1 + · · ·+ cnvn is in ker(T ). We have

0 = T (v) = T (c1v1 + · · ·+ cnvn) = c1T (v1) + · · ·+ cnT (vn)

and since the T (vi) form a basis, each ci = 0, so v = 0, and ker(T ) = 0, so T is injective. Similarly, fix w ∈ W .
Then, we have that

w = c1T (v1) + · · ·+ cnT (vn) = T (c1v1 + · · ·+ cnvn)

and so w ∈ im(T ). Thus, we have that im(T ) = W and therefore T is surjective. We conclude that T is
invertible.
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We can additionally conclude that in order to construct an isomorphism between two vector spaces, we can
simply choose our linear map to map bases to bases, and this is equivalent to producing a linear map.

Corollary. Let V,W be finite-dimensional F -vector spaces. If V and W are isomorphic, then dim(V ) =
dim(W ).

Proof. Suppose dim(V ) = n. Choose an isomorphism T : V → W , and fix a basis {v1, . . . , vn} for V . Then,
by the above theorem, the set {T (v1), . . . , T (vn)} is a basis for W , so dim(W ) = n.

The above statements also hold when V and W are not finite-dimensional, but the proof is more involved,
so I’ll omit them here. This in fact shows that any finite-dimensional vector space is isomorphic to Fn,
and on homework you will show that isomorphisms are transitive, so we can conclude that every finite-
dimensional F -vector space of the same dimension is isomorphic!

Furthermore, choosing bases for V and W (with an ordering) implicitly gives a choice of isomorphism to
Fn, so for T : V → W with dim(V ) = n and dim(W ) = m, we can draw the diagram

V W

Fn Fm

T

M

where the arrows on the sides are isomorphisms, and go both ways. Thus, following a linear map from V
to W along T is the same as following the isomorphism on the left, following the matrix M representing T
from Fn to Fm, and then following the isomorphism on the right.

If we instead choose a different basis, then we have the following diagram.

V W

Fn Fm

Fn Fm

T

M
Q

M ′

P

Note that P and Q represent isomorphisms of Fn and Fm with each other, and we can write the matrix M ′

as M ′ = Q−1MP . Thus, the matrices M and M ′ differ by a similarity transformation, where the matrices P
and Q represent change of basis matrices for both V and W in Fn and Fm, respectively. Furthermore, note
that if V = W and the same basis is chosen for both copies of V , then our diagram says that M ′ = P−1MP ,
which is precisely the change of basis for square matrices from a first course in linear algebra.

Now that we have the language of isomorphisms, we can prove one of the major results in linear algebra.

Theorem. (First Isomorphism Theorem) Let V,W be F -vector spaces, and let T : V → W be a linear map.
Then, there is a canonical isomorphism

V/ ker(T ) ∼= im(T )

as F -vector spaces.

Proof. We define a map T̂ : V/ ker(T ) → im(T ) by sending [v] 7→ T (v). Note first that by definition,
T (v) ∈ im(T ) for all v ∈ V . We first show that this map is well-defined and independent of choice of
representative in [v]. Suppose [v] = [w]. Then, v ∼ w, so v − w ∈ ker(T ). Then, we have that

T (v)− T (w) = T (v − w) = 0

and so T (v) = T (w), so T̂ is indeed well-defined.
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We show that T̂ is injective. Fix [v] ∈ V/ ker(T ), and suppose T̂ ([v]) = 0. Then, we have that

0 = T̂ ([v]) = T (v)

and so v ∈ ker(T ), so [v] = 0. We conclude that ker(T̂ ) = 0, and so T̂ is injective.

We show that T̂ is surjective. Fix w ∈ im(T ). Then, since w ∈ im(T ), we can find v ∈ V such that T (v) = w.
Then, we have that

T̂ ([v]) = T (v) = w

and so w ∈ im(T̂ ). Since W was arbitrary, T̂ is surjective.

We conclude that T̂ is indeed an isomorphism, as desired.

From this, we have an immediate corollary, which might be familiar from a first course in linear algebra.

Corollary. (Rank-Nullity Theorem) Let V,W be F -vector spaces, and let T : V → W be a linear map. Then,
we have that

dim(ker(T )) + dim(im(T )) = dim(V )

Proof. We have that V/ ker(T ) ∼= im(T ), so applying the homework result that dim(V/W ) = dim(V ) −
dim(W ) and that isomorphic vector spaces have the same dimension, we have that

dim(V )− dim(ker(T )) = dim(im(T ))

and the result follows.

The First Isomorphism Theorem motivates our intuition of quotient spaces: for any W ⊂ V , we can choose
a linear transformation T which ”collapses” W to 0, therefore making ker(T ) = W , and the image of T ,
which maps everything outside of W , is isomorphic to the quotient space V/W .
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8 The Vector Space of Linear Transformations

Planned Lecture Date(s): July 10th, 2023.

In this section, we take a step back from linear transformations, and instead view the set of linear transfor-
mations between two vector spaces as its own object. Recall that for F -vector spaces V and W , we have

HomF (V,W ) = {T |T : V → W is linear}

However, since these are just functions, we can perform some operations on them. For S, T ∈ HomF (V,W ),
we can define S + T ∈ HomF (V,W ) to be

(S + T )(v) = S(v) + T (v)

and similarly for c ∈ F and T ∈ HomF (V,W ), we can define cT ∈ HomF (V,W ) to be

(cT )(v) = cT (v)

This defines addition and scalar multiplication on the set HomF (V,W ), and furthermore the remaining
axioms can be checked to verify that the set of linear transformations from V to W forms a vector space!
Note that the additive identity in this vector space is the zero map, which sends every vector in V to 0 in
W . What can we say about this vector space?

Theorem. Let V,W be finite-dimensional F -vector spaces. Then, dim(HomF (V,W )) = dim(V ) dim(W ).

Proof. Fix bases for V and W , and let n = dim(V ) and m = dim(W ). Then, any T ∈ HomF (V,W ) has
a unique matrix representation, as an m × n matrix from Fn to Fm. Since a matrix of this form has mn
(independent) entries, the vector space of matrices is isomorphic to Fmn. Thus, dim(HomF (V,W )) = mn,
as desired

This gives us another way to construct new vector spaces! Given any two vector spaces over F , we can
construct a larger vector space. When V = W = Fn, we have that HomF (V,W ) is precisely the n × n
square matrices with entries in F . One observation you might make is that we can do more than add and
scalar multiply square matrices, but we can actually multiply them as well - it turns out that this makes
HomF (V, V ) more than just a vector space over F , but in fact an algebra over F . We won’t go into too much
detail about algebras, but one can think of them as a vector space together with additional multiplicative
structure.

Example. We examine some examples of HomF (V,W ). Note that in the finite dimensional case, any
claims of isomorphism can be accomplished simply by counting dimension, but I attempt to give a basis-
independent isomorphism.

• HomF (F
n, Fm) is the set of m× n matrices.

• HomF (0,W ) ∼= {0}, since the only linear transformation out of the zero vector space is the map
sending 0 to 0.

• HomF (F,W ) ∼= W , since for T ∈ HomF (F,W ), if T (1) = w ∈ W , then T (c) = cT (1) = cw.

• HomF (V, F ) ∼= V , but this isomorphism is a bit more involved, so we will investigate it further.

The last example above, the set HomF (V, F ), has a special name.

Definition. Let V be a vector space over F . Then, we define the dual space of V , denoted V ∗, to be
HomF (V, F ).

The dual space contains linear functionals: maps from V into the base field F which are linear. If V is finite
dimensional and dim(V ) = n, then we can perform the following construction.

25



Definition. Let V be a finite-dimensional vector space over F , with dim(V ) = n. Let B = {v1, . . . , vn} be a
basis for V . Then, we define the dual basis for V to be B∗ = {ε1, . . . , εn}, where

εi(vj) =

{
1 i = j

0 i ̸= j

Recall that defining a linear map on a basis determines the entire linear map, so I have defined each εi fully.
Since this is called the dual basis, it had better be a basis for the dual space.

Theorem. Let V be a finite-dimensional vector space over F , with dim(V ) = n. Let B = {v1, . . . , vn} be a
basis for V . Then, the dual basis B∗ = {ε1, . . . , εn} is a basis for V ∗, the dual space of V .

Proof. We show that B∗ is linearly independent. Suppose that

Z = c1ε1 + · · ·+ cnεn

where Z represents the zero function in V ∗ = HomF (V, F ). Then, we have that Z(v) = 0 for all v ∈ V , so
we compute

0 = Z(vi) = (c1ε1 + · · ·+ cnεn)(vi) = ai

and thus each ci = 0.

We show that B∗ is a spanning set. Fix T ∈ HomF (V, F ). Then, set

ci = T (vi)

We claim that
T = c1ε1 + · · ·+ cnεn

Let S denote the right hand side. Then, S(vi) = T (vi) for each i by construction, so we have that (S −
T )(vi) = 0 for all i. Since the vi form a basis for V , (S − T ) must be the zero function, and so S = T as
desired.

We conclude that B∗ is a basis for V ∗.

Not only does this theorem show us that dim(V ∗) = dim(V ), which we already knew, but it also allows us
to construct an explicit isomorphism, only by choosing a basis for V (and not additionally V ∗), by sending
vi to the corresponding εi. It turns out that in general, there is no way to construct a canonical isomorphism
between V and V ∗, but this discussion is beyond the scope of this course.

When V is infinite dimensional, it is in fact true that the cardinality of dim(V ∗) > dim(V ), and this inequal-
ity is strict! However, this proof is beyond the scope of this course.

In mathematics, a general viewpoint is to consider mathematical objects and their associated functions
together, and this is no exception. We can take the dual of a vector space, but we’d like to define the notion
of ”dualization” to not just vector spaces, but the linear transformations between them.

Definition. Let V,W be F -vector spaces, and let T : V → W be a linear map. Then, we define the dual
map associated to T , denoted T ∗, via

T ∗ : W ∗ → V ∗

λ 7→ λ ◦ T

This definition is confusing, and quite unintuitive, so we illustrate it with the following diagram.

V W

F

T

λ◦T λ
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In order to construct a map from W ∗ to V ∗, we must take in an element of W ∗ = HomF (W,F ), and return
an element of V ∗ = HomF (V, F ). Given such a λ ∈ W ∗, the natural way to construct a map from V to F is
to first map from V to W along T , and then to map from W to F along λ. Note that this assignment does
not require us to choose bases on either V or W , and additionally this reverses the direction of the original
map T .

Suppose V is a finite-dimensional F -vector space, and we pick a basis (and therefore isomorphism to Fn).
Then, an element f ∈ V ∗ would map Fn to F , and is therefore represented by a 1 × n matrix (or a row
vector). Then, let’s consider the dual basis to the standard basis {e1, . . . , en} for Fn. We have that

εj(ei) =
(
c1 c2 · · · cn

)


0
...
1
...
0

 = ci

where the 1 occurs in the i-th position. Thus, for a fixed j, we must have that cj = 1 and ci = 0 for all
i ̸= j, and so in fact, in our matrix representation, the vector εi is simply the transpose of the vector ei!
This in fact holds in general, as when we’ve fixed bases, dim(V ) ∼= dim(V ∗), and furthermore the image of
any vector under the isomorphism is precisely the transpose. This in fact extends even further, as you will
show on homework that for T : V → W , if a basis for V and W are chosen, then the matrix associated to
T ∗ : W ∗ → V ∗ (in the dual basis in both V and W ) is precisely the transpose of the matrix associated to T .

We end this section with an observation: the dualization construction we’ve defined allows us to take the
dual of any vector space over F , so why not take the dual of V ∗ itself? We can define the double dual of V ,
and from our previous work, we know that dim(V ∗∗) = dim(V ∗) = dim(V ), and so V ∼= V ∗∗. Elements of
V ∗∗ take elements of V ∗, and send them to F . One such example is the evaluation map: for v ∈ V , we can
define

evv : V ∗ → F

λ 7→ λ(v)

and we can check that this is indeed an element of V ∗∗. It turns out that the map

T : V → V ∗∗

v 7→ evv

is in fact an isomorphism, and furthermore does not require a choice of basis for V ! This shows that not
only is V ∗∗ isomorphic to V , but it is canonically isomorphic to V , as we can produce a basis-independent
isomorphism.

Example. We work through an example of showing the matrix representation of the dual map is the trans-
pose of the original map. Let V = R2, let W = R3, and let

T =

 2 −1
4 0
−3 2


Choose the standard bases {e1, e2} on V and {e′1, e′2, e′3} on W , and let {ε1, ε2} and {ε′1, ε′2, ε′3} be the corre-
sponding dual bases, respectively. We’d like to determine the matrix representation of T ∗ in the dual bases.
We have that

T ∗(ε′1) = ε′1 ◦ T =
(
1 0 0

) 2 −1
4 0
−3 2

 =
(
2 −1

)
= 2ε1 − ε2
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T ∗(ε′2) = ε′2 ◦ T =
(
0 1 0

) 2 −1
4 0
−3 2

 =
(
4 0

)
= 4ε1

T ∗(ε′3) = ε′3 ◦ T =
(
0 0 1

) 2 −1
4 0
−3 2

 =
(
−3 2

)
= −3ε1 + 2ε2

Since we have determined where T sends each basis vector ε′i in terms of the εj , we can write down the
matrix for T ∗, since the columns correspond to the images of the ε′i, in the εj basis. We therefore have

T ∗ =

(
2 4 −3
−1 0 2

)
which is the transpose, as desired.
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9 Multilinear Maps

Planned Lecture Date(s): July 12th, 2023.

Linear maps are a central object in the study of linear algebra, and a natural question to ask may be how
we can extend linear maps to a broader class of objects. For example, if we are given a collection of vector
spaces V1, V2, . . . , Vn, and a target vector space W , we can define functions

T : V1 × · · · × Vn → W

Note here that the domain is the Cartesian product of the Vi, and so we think of it setwise as simply ordered
n-tuples (v1, . . . , vn), where each vi ∈ Vi. This differs from the direct sum, as the direct sum of these vector
spaces would have a vector space structure itself, whereas here we are not considering the product as
having any vector space structure.

Definition. Let V1, . . . , Vn,W be F -vector spaces, and let

T : V1 × · · · × Vn → W

be a function. Then, T is said to be multilinear if for each i, the map

Ti : Vi → W

v 7→ T (v1, . . . , vi−1, v, vi+1, . . . , vn)

is an F -linear map.

We think of T as a map which is linear in each component, so if we hold all inputs constant except for one, T
would be a linear map in that component.

Warning: This is not the same thing as being a linear map from the direct sum of the Vi. For example, if T
were a linear map on the direct sum, then for c ∈ F we would have

T (cv1, cv2, . . . , cvn) = cT (v1, v2, . . . , vn)

but since T is multilinear, it is linear in each component, so we would have

T (cv1, cv2, . . . , cvn) = cnT (v1, v2, . . . , vn)

where we take the scalar c out of each component using multilinearity. We conclude that the direct sum of
the Vi is not quite the correct place to capture the multilinearity of the map T . Instead, we can define what
is known as the tensor product of the Vi, but this is a very involved topic which I will not cover (for now).

We’ll denote the set of multilinear transformations using the notation

HomF (V1, . . . , Vn;W ) = {T : V1 × · · · × Vn → W |T is multilinear}

Note that the semicolon emphasizes that the last entry, W , is the codomain, whereas the entries before are
factors in the domain. We’ll often say that such a map is n-linear if the input is an n-fold product, or in other
words, takes in n inputs. When n = 1, this notation precisely agrees with the notation we’ve previously
had for the vector space of linear transformations, perhaps without a semicolon. If the Vi are all the same
V , we will often use the shorthand V n to denote V1 through V n. A straightforward check will show that
HomF (V1, . . . , Vn;W ) form a vector space itself, and as usual, the first question we can ask about this vector
space is what the dimension is.

Theorem. Let V1, . . . , Vn,W be F -vector spaces. Then, we have that

dim(V1, . . . , Vn,W ) = dim(V1) dim(V2) · · · dim(Vn) dim(W )
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Proof. We begin the proof by making a very important observation. Suppose we fix a vector v ∈ Vn. Then,
the map

T ′ : V1 × · · · × Vn−1 → W

(v1, . . . , vn−1) 7→ T (v1, . . . , vn−1, v)

is still multilinear (but now only (n− 1)-linear rather than n-linear), since if we take all but one entry fixed,
linearity of that entry is inherited from the multilinearity of T . This means that for a fixed T and any v ∈ Vn,
we have a way of producing an element of HomF (V1, . . . , Vn−1;W ) by simply fixing the last element of T .

Lemma. Let V1, . . . , Vn,W be F -vector spaces. Then, we have that

HomF (V1, . . . , Vn;W ) ∼= HomF (Vn,HomF (V1, . . . , Vn−1;W ))

where the Hom-set on the right is the set of linear transformations between two vector spaces.

Proof. The description above outlines a map which takes an element of HomF (V1, . . . , Vn;W ), and returns
a method of taking an element of Vn to an element of HomF (V1, . . . , Vn−1;W ). This is precisely an element
of the right hand side, and formally looks like

φ : HomF (V1, . . . , Vn;W ) → HomF (Vn,HomF (V1, . . . , Vn−1;W ))

T 7→ (v 7→ ((v1, . . . , vn−1) 7→ T (v1, . . . , vn−1, v)))

A slightly involved check shows that φ is linear, and we can produce an inverse in a similar manner, by start-
ing with a map S from Vn to HomF (V1, . . . , Vn−1;W ), and constructing an element S′ ∈ HomF (V1, . . . , Vn;W )
by sending (v1, . . . , vn) to S(vn)(v1, . . . , vn−1). Mathematically, we write this as

φ−1 : HomF (Vn,HomF (V1, . . . , Vn−1;W )) → HomF (V1, . . . , Vn;W )

S 7→ ((v1, . . . , vn) 7→ S(vn)(v1, . . . , vn−1))

A tedious computation shows that this is indeed an inverse, and so we conclude these spaces are isomor-
phic.

We now prove our theorem by induction.

Base Case: When n = 1, we have that dim(HomF (V1;W )) = dim(V1) dim(W ), by previous result.

Inductive Step: Suppose this holds for some n− 1. Then, we have that

dim(HomF (V1, . . . , Vn;W )) = dim(HomF (Vn,HomF (V1, . . . , Vn−1;W ))

= dim(Vn) dim(HomF (V1, . . . , Vn−1;W ))

= dim(Vn) dim(V1) dim(V2) · · · dim(Vn−1) dim(W )

which gives the desired result.

This proof actually illustrates an incredibly useful fact, which is that taking one entry constant in an n-
linear map is the same thing as defining a map from that entry to an (n− 1)-linear map in the other entries.
Students of computer science may recognize this as currying.

We’ll frequently restrict ourselves to the case where each Vi is the same, and so we’ll consider HomF (V
n;W ).

When W = F , we say that elements of HomF (V
n;F ) are n-linear forms, and we can investigate these ob-

jects.

Definition. Let V be an F -vector space, and consider HomF (V
k;F ), the set of k-linear forms. We say that

an element f ∈ HomF (V
k;F ) is...

• ...symmetric if for any permutation σ of {1, 2, . . . , k}, we have that

f(v1, . . . , vk) = f(vσ(1), vσ(2), . . . , vσ(k))

In other words, f does not depend on the order of the inputs.
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• ...anti-symmetric (or skew-symmetric) if for all 1 ≤ i, j ≤ k, we have that

f(v1, . . . , vi, . . . , vj , . . . , vk) = −f(v1, . . . , vj , . . . , vi, . . . , vk)

In other words, swapping any two entries of f gives a minus sign.

• ...alternating if whenever vi = vj for i ̸= j, we have that

f(v1, . . . , vk) = 0

In other words, if f has a repeated input, then f will be 0.

A clever observer may notice that the last two definitions are similar, and we validate this intuition with
the following theorem.

Theorem. Let V be an F -vector space. Then, if f ∈ HomF (V
k;F ) is alternating, then f is anti-symmetric.

Furthermore, if char(F ) ̸= 2, then the reverse implication holds.

Proof. Suppose f is alternating. Then, we have that

0 = f(v1, . . . , vi + vj , . . . , vi + vj . . . , vk)

= f(v1, . . . , vi, . . . , vi, . . . , vk) + f(v1, . . . , vi, . . . , vj , . . . , vk)

+ f(v1, . . . , vj , . . . , vi, . . . , vk) + f(v1, . . . , vj , . . . , vj , . . . , vk)

= 0 + f(v1, . . . , vi, . . . , vj , . . . , vk) + f(v1, . . . , vj , . . . , vi, . . . , vk) + 0

f(v1, . . . , vi, . . . , vj , . . . , vk) = −f(v1, . . . , vj , . . . , vi, . . . , vk)

Suppose f is anti-symmetric. Then, we have that

f(v1, . . . , vi, . . . , vi, . . . , vk) = −f(v1, . . . , vi, . . . , vi, . . . , vk)

2f(v1, . . . , vi, . . . , vi, . . . , vk) = 0

and since char(F ) ̸= 2, we conclude that f(v1, . . . , vi, . . . , vi, . . . , vk) = 0.

When char(F ) = 2, we know that 1 = −1, and so the symmetric and anti-symmetric forms are actually the
same! There also exist alternating forms which are not (anti-)symmetric - can you find one?

Theorem. Let V be an F -vector space of dimension n. Then, the following sets are subspaces of HomF (V
k;F ).

• The symmetric forms, denoted

Symk(V ) = {f ∈ HomF (V
k, F ) | f is symmetric}

We have that dim(Symk(V )) =
(
n+k−1

k

)
.

• The alternating forms, denoted

Altk(V ) = {f ∈ HomF (V
k, F ) | f is alternating}

We have that dim(Altk(V )) =
(
n
k

)
.

Proof. Homework.

One of the benefits of alternating forms is that we can use them to detect linear dependence. Suppose V is
an F -vector space, and S = {v1, . . . , vk} are a set of linearly dependent vectors in V . Then, without loss of
generality, we can write v1 as a linear combination of the remaining vectors.

v1 = c2v2 + · · ·+ cnvn
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Then, if f ∈ Altk(V ), we have that

f(v1, v2, . . . , vk) = f(c2v2 + · · ·+ cnvn, v2, . . . , vn)

= c2f(v2, v2, . . . , vn) + · · ·+ cnf(vn, v2, . . . , vn)

= 0

since each entry in the sum will have a repeated input. Note that this has no guarantees if S is linearly
independent - f could also evaluate to 0. We can use these alternating forms to give us information
about the linear dependence of the entries. In the special case where k = dim(V ) = n, we have that
dim(Altn(V )) =

(
n
n

)
= 1, so the space of alternating n-linear forms on V are all simply scalar multiples of

each other. Furthermore, if f ∈ Altn(V ) and S = {v1, . . . , vn} is linearly independent, then S is a basis
for V , and so if f(v1, . . . , vn) = 0, then one can show (by expanding each wi in the given basis and using
multilinearity of f ) that f on any set of vectors (w1, . . . , wn) ∈ V n will be 0, and so f will be the zero map.

However, since dim(Altn(V )) = 1, any nonzero map in Altn(V ) will take linearly independent sets to
a nonzero value, and linearly dependent sets to 0. If we fix a basis {v1, . . . , vn} for V , and require that
f(v1, . . . , vn) to be 1, then we have uniquely determined an alternating n-linear map - and this will turn out
to be the determinant.
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10 Determinants

Planned Lecture Date(s): July 14th, 2023.

From the last lecture, we saw that if V is an F -vector space of dimension n, there is (up to scaling) only
one n-linear alternating map from V n to F , and furthermore, this map detects the linear independence of
n vectors (and therefore, whether or not they form a basis for V ) in that it evaluates to a nonzero value if
and only if the inputs form a basis. In this section, we give a more precise definition of the determinant. We
begin with some preliminary definitions.

Definition. Let [n] = {1, 2, . . . , n}. A permutation of [n] is a bijection σ : [n] → [n], and we let Sn denote
the set of all permutations of [n].

Students with experience in group theory will recognize this as the symmetric group on n elements. Many
of the results we use today will follow from results of group theory, but I will do my best to avoid them
when possible. Note that |Sn| = n!, since there are n! ways to permute n elements. For any permutation σ,
we can think of it as the (ordered) image of σ(1), σ(2), . . . , σ(n).

Example. One such σ ∈ S3 would be defined by σ(1) = 2, σ(2) = 1, and σ(3) = 3. We would denote this
by (2, 1, 3).

A transposition is the act of swapping any two entries. For example, (2, 1, 3) and (2, 3, 1) differ by one
transposition.

Definition. For a permutation σ ∈ Sn, let T (σ) denote the number of transpositions from σ to the identity
permutation. We can define the sign of σ to be

sgn(σ) = (−1)T (σ)

The fact that this definition is well-defined is very nontrivial - two different sequences of transpositions
from the identity permutation to σ will very possibly have different lengths, but the fact that they must
differ by an even number (and thus making sgn(σ) well-defined) is a fact from group theory which I will
not prove (you can find this in most group theory textbooks). Perhaps an indication that the sign function
is indeed well-defined is the following lemma.

Lemma. Let V be an F -vector space of dimension n, and suppose f ∈ Altk(V ). Then, we have that

f(v1, . . . , vk) = sgn(σ)f(vσ(1), . . . , vσ(k))

Proof. Note that each transposition in σ contributes exactly one minus sign, as f is alternating, so the total
number of minus signs contributed will multiply to sgn(σ).

Note that if sgn(σ) were not well-defined, we could show that

f(v1, . . . , vk) = −f(v1, . . . , vk)

and if char(F ) ̸= 2 this would imply that f = 0, so the existence of nonzero alternating maps verifies the
well-definedness of the sign function.

We now attempt to construct the determinant. Let V be an F -vector space of dimension n, and fix f ∈
Altn(V ). Fix a basis B = {v1, . . . , vn} for V . Since f(v1, . . . , vn) = c ̸= 0, without loss of generality, we can
replace f with 1

cf to ensure that f(v1, . . . , vn) = 1. Then, suppose that (w1, . . . , wn) ∈ V n is an ordered set
of n vectors in V . We can write

wi =

n∑
j=1

cijvj

We compute

f(w1, . . . , wn) = f

 n∑
j1=1

c1j1vj1 , . . . ,

n∑
jn=1

cnjnvjn


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=

n∑
j1=1

· · ·
n∑

jn=1

c1j1 · · · cnjnf(vj1 , . . . , vjn)

At this point, we exploit the fact that f is alternating. Whenever any of the vjk agree, f will evaluate to 0,
so the only terms remaining are the terms in which each of {1, 2, . . . , n} appears exactly once. These are
precisely permutations of [n], so we rewrite as

=
∑
σ∈Sn

c1,σ(1) · · · cn,σ(n)f(vσ(1), . . . , vσ(n))

However, by our lemma above, the value of f is simply sgn(σ), since the value of f on {v1, . . . , vn} was
chosen to be 1.

=
∑
σ∈Sn

sgn(σ)c1,σ(1) · · · cn,σ(n)

=
∑
σ∈Sn

sgn(σ)

n∏
i=1

ci,σ(i)

and so we have produced a formula for the determinant. We take a moment to emphasize that since the
determinant is a map into F , the value of the determinant is always an element of the field F over which V
is a vector space.

Let’s play with this formula concretely: suppose V = Fn, and our chosen basis is B = {e1, . . . , en}. Then,
cij is the j-th component of wi, and so if we put (w1, . . . , wn) into the columns of a matrix, we have

c11 c12 · · · c1n
c21 c22 · · · c2n

...
...

. . .
...

cn1 cn2 · · · cnn


and our formula asks us to choose one entry from each row and column, such that no row or column
is repeated, take the product of those entries together with a sign of the permutation, and sum over all
permutations. In the 2× 2 case, this is done by computing

det

((
a11 a12
a21 a22

))
= a11a22 − a12a21

and in the 3× 3 case, this is done by computing

det

a11 a12 a13
a21 a22 a23
a31 a32 a33


= a11a22a33 + a12a23a31 + a13a21a32

− a11a23a32 − a12a21a33 − a13a22a31

Note that many of the techniques you’ve previously seen in computing determinants (such as basket-
weaving, expansion by minors, etc.) are simply mnemonic techniques for computing this sum over all
permutations.

The main takeaways of our work so far is the following: for V an F -vector space of dimension n, and
B = {v1, . . . , vn} a basis for V , the determinant is the unique alternating n-linear map from V n → F
satisfying f(v1, . . . , vn) = 1. Furthermore, we have a formula to compute f on any set of n vectors in V ,
and we know that f(w1, . . . , wn) ̸= 0 if and only if {w1, . . . , wn} form a basis for V .

Thus far, we’ve only taken determinants of sets of n vectors, but we commonly think of determinants as a
property of matrices. This is a fairly easy identification to make, since given a matrix, we can simply take
the determinant of the n columns of the matrix. However, this identification is more insightful than it may
first appear.
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Theorem. Let M be an n× n matrix. Then, det(M) ̸= 0 if and only if M is invertible.

Proof. Since M is n × n, we think of M as a map from Fn to itself with some fixed basis {v1, . . . , vn}. We
recall that M is invertible if and only if it takes bases to bases. Furthermore, the columns of M are precisely
the images of {v1, . . . , vn}, and so this set is a basis if and only if the determinant of the columns of M is
nonzero.

We’ll recall one of the most important properties of determinants.

Theorem. Let A,B be n× n matrices. Then, we have that

det(AB) = det(A) det(B)

Proof. This follows from a lot of tedious computation, which I will omit.

Corollary. If A is an invertible matrix, then det(A−1) = det(A)−1.

Proof. We have that
1 = det(Id) = det(AA−1) = det(A) det(A−1)

which gives our desired result.

This theorem provides many consequences: for example, we can frequently compute determinants by per-
forming row reduction, since we can represent row operations as matrices of determinant 1. However, the
most important of these is the following.

Theorem. Suppose V is an F -vector space, and T ∈ End(V ). Then, the determinant of any matrix repre-
sentation of T is the same.

Proof. From previous work, we’ve seen that if M and M ′ are two matrix representations of T in different
bases, then they are related by the relation

M ′ = P−1MP

We therefore have

det(M ′) = det(P−1MP ) = det(P−1) det(M) det(P ) = det(P )−1 det(P ) det(M) = det(M)

This allows us to make a very powerful statement: if the determinant of any matrix representation of T is
the same, we can in fact define the determinant of the linear transformation T !

Definition. Let V be a finite-dimensional vector space, and let T ∈ End(V ). Then, the determinant of T is
the determinant of any matrix representation of T .

Many nice properties follow from this.

Corollary. Let V be an F -vector space, and S, T ∈ End(V ).

• T is invertible if and only if det(T ) ̸= 0.

• det(S ◦ T ) = det(S) det(T ).

• det(T−1) = det(T )−1.

• det(T ∗) = det(T ).

The last property follows from the dual map of T being represented as a matrix by the transpose, which
has the same determinant.
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11 Eigenvalues and Eigenvectors

Planned Lecture Date(s): July 17th, 2023.

Recall that for a finite-dimensional F -vector space V , and a linear map T : V → V , after choosing a basis
for V , the map T has a matrix representation. However, this matrix representation depends heavily on the
basis, so a natural question to ask may be: what choice of basis for V makes the most sense for the map T ?
Let’s try to motivate this with some intuition. Consider the following matrix in the standard basis e for R2.

Me =

(
4 −2
1 1

)
We see that M in the e-basis takes e1 to 4e1 + e2, and takes e2 to −2e1 + e2. This is, in some sense, not
desirable, as our bases ”mix”: M maps one basis to some combination of the two bases. However, if we
instead choose the basis

B =

{
v1 =

(
−1
1

)
, v2 =

(
−1
2

)}
then we can write

MB =

(
3 0
0 2

)
and M in the B-basis takes v1 to 3v1 and v2 to 2v2. In some sense, we have separated the action of M into
two components: the action of M on span(v1) is completely independent from the action of M on span(v2).
Thus, we could write

R2 = span(v1)⊕ span(v2)

and furthermore, M restricts to a linear transformation Mi on span(vi). Note that this would not be true if
M were to ”mix” the components! This allows us to treat these two subspaces completely separate from
each other, and by decomposing our space into separate components, this gives us a more ”natural” basis
to express M in.

The key observation here is that for any v ∈ span(vi), M(v) ∈ span(vi), so this subspace is closed under the
operation of M . This leads us to a definition.

Definition. Let V be an F -vector space, and T : V → V . Then, a subspace W ⊂ V is said to be an invariant
subspace if T (W ) ⊂ W . In other words, for all w ∈ W , we have that T (w) ∈ W .

If we can write V as a direct sum of invariant subspaces, such as

V = V1 ⊕ · · · ⊕ Vk

where each Vi is an invariant subspace of T , then choosing bases for each Vi and concatenating to obtain a
basis for V , we can write a matrix representation for T as

MT =


M1,1

M2,2

. . .
Mk,k


where each Mi,i is a square block matrix of size dim(Vi), representing the restriction of T to Vi. Furthermore,
all entries outside of these blocks are zero, since none of the Vi ”interact” when acted upon by T . Thus, if
we’d like to put our matrix in block diagonal form, we need to find invariant subspaces which direct sum
to V .

Example. We have several examples of invariant subspaces.

• For any vector space V and map T : V → V , both {0} and V are invariant subspaces.
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• When V = R3, and T is a rotation matrix about the z-axis, given by

MT =

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1


we note that the 2-dimensional subspace given by the xy-plane is an invariant subspace of R3.

• If v is a vector satisfying T (v) = λv for some λ ∈ F , then span(v) is an invariant subspace of V .

This last example should look familiar to students having taken a first course in linear algebra! We’ll focus
on this case for now.

Definition. Let V be an F -vector space, and let T : V → V be a linear map. An eigenvector of T is a
non-zero vector v ∈ V such that for some λ ∈ F , we have that T (v) = λv. The scalar λ is said to be the
eigenvalue associated to the eigenvector v.

Note that while the eigenvector v is not allowed to be 0 (if it were, what would its eigenvalue be?), the
eigenvalue λ is certainly permitted to be 0. Let’s prove some statements about eigenvectors and eigenval-
ues.

Theorem. Let V be an F -vector space, and T : V → V a linear map.

• If v is an eigenvector of T , then the eigenvalue associated to v is unique.

• For a given eigenvalue λ, the space of eigenvectors of T with eigenvalue λ (together with 0) form a
subspace of V . This space is called the eigenspace associated to λ.

• If {v1, . . . , vn} ⊂ S are a collection of eigenvectors with distinct eigenvalues λi corresponding to vi,
then {v1, . . . , vn} is linearly independent.

Proof. We prove these claims.

• Suppose T (v) = λ1v and also T (v) = λ2v. Then, λ1v = λ2v, and since v ̸= 0 by assumption, by
previous homework we conclude λ1 = λ2.

• Fix an eigenvalue λ, and let Vλ denote the set of eigenvectors of V with eigenvalue λ, together with 0.
Fix c ∈ F and v, w ∈ Vλ. Note that 0 ∈ Vλ, so Vλ ̸= ∅. We then have that

T (cv + w) = cT (v) + T (w) = cλv + λw = λ(cv + w)

so cv + w ∈ Vλ, as desired.

• We induct on n. Suppose n = 1. Since v1 is an eigenvector, it is not 0, so the set {v1} is linearly
independent.

Suppose this holds for n− 1. Write a linear combination

c1v1 + · · ·+ cnvn = 0

Then, we have that
T (c1v1 + · · ·+ cnvn) = c1λ1v1 + · · ·+ cnλnvn

However, multiplying our original expression by λ1, we have that

λ1(c1v1 + · · ·+ cnvn) = c1λ1v1 + · · ·+ cnλ1vn

and subtracting, we have that

0 = c1(λ1 − λ1)v1 + c2(λ2 − λ1)v2 + · · ·+ cn(λn − λ1)vn
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Since the first term is 0, this is a linear combination of {v2, . . . , vn}, so by the inductive hypothesis
these vectors are linearly independent. Thus, for 2 ≤ i ≤ n, each ci(λi − λ1) = 0, but since the
eigenvalues are distinct, we must have that ci = 0. Thus, our original equation reads

0 = c1v1

and since v1 ̸= 0, we must have c1 = 0 as well.

One conclusion we can draw from this theorem is that if we find enough eigenvectors, we can use our
eigenspaces as invariant subspaces, and furthermore since they are linearly independent, we can show that
the sum will be direct, and this will give us the decomposition we want. The next question to ask is: how
do we find eigenvectors?

We return to our original equation, where we try to find non-zero vectors v satisfying T (v) = λv. We then
have that

T (v) = λv

T (v)− λv = 0

(T − λ Id)v = 0

and so v must be in ker(T − λ Id). Since v is non-zero, the kernel of T − λ Id has a non-trivial element, so
T −λ Id cannot be invertible. How do we detect invertibility of a linear transformation? We must have that
det(T − λ Id) = 0. In any basis, the computation of the determinant is simply sums and products of the
entries, so expanding the determinant as a function of λ, we obtain some polynomial in λ.

Definition. Let V be an F -vector space, and T : V → V a linear map. Then, the expression det(T − λ Id)
is a polynomial in λ, and is referred to as the characteristic polynomial of T . Note that when we express
T in a matrix, we see that the term λ occurs in n different entries, and thus the degree of the characterstic
polynomial is n.

Note first that since the determinant does not depend on the choice of basis, neither does the characteristic
polynomial, so this is indeed well-defined for linear transformations. Furthermore, solutions (roots) to the
characteristic polynomial correspond precisely to the eigenvalues which have (non-zero) eigenvectors, and
so if we are able to find an eigenvalue λ, then the eigenspace Vλ is given by

Vλ = ker(T − λ Id)

Since a polynomial over a field of degree n can only have n roots, T has at most n distinct eigenvalues. Note
that by construction, if λ is an eigenvalue, then dim(ker(T −λ Id)) ≥ 1. Let p(t) be the characteristic polyno-
mial of T . If p(t) has n = dim(V ) distinct roots λ1, . . . , λn in F , then each corresponds to an eigenspace Vλi

,
and furthermore these eigenspaces must be disjoint (aside from 0) since the eigenvectors associated with
distinct eigenvalues are linearly independent. Thus, we have

Vλ1
⊕ · · · ⊕ Vλn

⊂ V

but the dimension of the left is at least n since each summand has dimension at least 1, so we conclude the
left side must have exactly dimension n, and thus be equal to V . This gives us our desired decomposition!
We can then write

MT =


M1,1

M2,2

. . .
Mn,n


where each Mi,i is a 1 × 1 square matrix (and thus a single element of F ). How do we know what Mi,i is?
Restricting to Vλi

, we see that T |Vλi
= λi Id, so Mi,i = λi in some (and actually any) choice of basis. Thus,
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if we simply pick vi ∈ Vλi , then the set {vi} form a basis of eigenvectors (or eigenbasis) for V . When an
eigenbasis exists, we say that T is diagonalizable (since the only nonzero entries are on the diagonal). What
we have shown here is that when the characteristic polynomial has n = dim(V ) distinct roots, T will always
be diagonalizable, using this construction. However, we have required some fairly strong assumptions, and
in the next lecture, we’ll explore what happens if those assumptions are relaxed.

Since the determinant is invariant under change of basis, if we change our basis so that M is diagonal, the
determinant is simply the product of the diagonal entries. Thus, we conclude that when T is diagonalizable,
the determinant is given by the product of the roots. It turns out that this will be true even when T is not
diagonalizable, but we’ll need a bit more machinery to see this. However, the determinant is not the only
quantity associated to a matrix that has an interesting interpretation in terms of eigenvalues.

Definition. Let M be an n× n matrix. Then, the trace of M , denoted tr(M) is defined to be the sum of the
diagonal elements of M .

Theorem. Let A and B be n× n matrices. Then, we have that tr(AB) = tr(BA).

Proof. This can be checked using a tedious computation.

Theorem. Let V be a F -vector space, and let T : V → V . Then, the trace of T , denoted tr(T ), is the trace of
any matrix representation of T , and is well-defined.

Proof. We know that if M and M ′ are two matrix representations of T , then M ′ = P−1MP . We therefore
have

tr(M ′) = tr(P−1MP ) = tr(PP−1M) = tr(M)

and thus the trace is independent of basis.

Corollary. Let V be an F -vector space, and let T : V → V be a diagonalizable linear map. Then, tr(T ) is
the sum of the eigenvalues, and det(T ) is the product of the eigenvalues.

Proof. Since T is diagonalizable, choose a basis for V in which T is diagonal, with the eigenvalues on the
diagonal. Then, both trace and determinant are independent of basis, so they can be computed in this
basis.

One observation to make is that if 0 is an eigenvalue of T , then det(T ) = 0, so T is not invertible. This can
also be seen by the definition of an eigenvalue, as T (v) = 0 has a nonzero solution.

It turns out that in general, even if our matrix is not diagonalizable, we can still make a similar statement,
but we will return to this in a little bit.
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12 Nilpotent Maps and Cyclic Subspaces

Planned Lecture Date(s): July 19th, 2023.

We take a brief interlude from eigenvalues and eigenvectors to discuss a topic which will be very useful to
us soon.

Definition. Let T : V → V be a linear map. T is said to be nilpotent if T k = 0 for some natural number k.
The smallest k such that T k = 0 is the index of nilpotency.

Our goal is to show that if a linear map T : V → V is nilpotent, we can find a basis for V in which the
matrix representation of T is particularly nice.

Definition. Let T : V → V be a linear map. Then, for v ∈ V , the cyclic subspace associated to v is given by

C(v) = span{v, T (v), T 2(v), . . . }

Note that this definition depends on T .

Note that since T is nilpotent, T k will eventually be 0, and so this is the span of a finite set.

Lemma. The set C(v) is a subspace with basis {v, T (v), T 2(v), . . . }\{0}. A cyclic basis is a (union of) bases
of this form.

Proof. If v = 0, C(v) is the zero space, so this statement is true. Otherwise, assume v ̸= 0. Since C(v) is
the span of a set of vectors, it is automatically a subspace, and the given basis spans C(v), so it is enough
to show that this set is linearly independent. Suppose k is the smallest integer such that T k+1(v) = 0, and
therefore our proposed basis is {v, T (v), T 2(v), . . . , T k(v)}. We have that

c0v + c1T (v) + c2T
2(v) + · · ·+ ckT

k(v) = 0

for some coefficients ci. Suppose not all ci are 0. Then, let j be the minimum integer such that cj ̸= 0. Then,
applying T k−j to the entire expression, we have

cjT
k(v) + cj+1T

k+1(v) + · · ·+ ckT
2k−j(v) = cjT

k(v) = T k−j(0) = 0

and since T k(v) ̸= 0 by assumption, we have that cj = 0, which is a contradiction. We conclude each ci = 0,
as desired.

Lemma. The index of nilpotency of T is equal to the dimension of the largest cyclic subspace of V (associ-
ated to T ).

Proof. Let k be the index of nilpotency of T . Since T k = 0, by the above lemma, any cyclic subspace C(v)
must have basis

{v, T (v), T 2(v), . . . , T k′
(v)}

where k′ < k, where T k′+1(v) = 0. Thus, we have that k′ + 1 = dim(C(v)) ≤ k for all v ∈ V .

Similarly, suppose every cyclic subspace C(v) has dimension at most k′. Suppose T k′ ̸= 0. Then, for some
v ∈ V , T k′

(v) ̸= 0, so the set
{v, T (v), . . . , T k′

(v), . . . }

would be a basis for for a cyclic subspace of dimension at least k′ + 1. Thus, we must have that T k′
= 0, so

k ≤ k′. We conclude that k is precisely the dimension of the largest cyclic subspace of V .

Theorem. Let V be an F -vector space of dimension n, and let T : V → V be a nilpotent linear map. Then,
we can decompose

V = C(v1)⊕ · · · ⊕ C(vℓ)

as a direct sum of cyclic subspaces. Furthermore, this decomposition (associated to T ) is unique up to the
number of subspaces (ℓ) and the dimension of each subspace.

40



Proof. We proceed by induction on the index of nilpotency of T . Suppose the index of nilpotency of T is 1.
Then, T = 0, and any basis for V given by {v1, . . . , vn} is a cyclic basis, where

V = C(v1)⊕ · · · ⊕ C(vn)

Suppose the claim holds for when T has index of nilpotency k−1. Restricting T to a map T : im(T ) → im(T ),
since we have already applied T once, the restriction of T has index of nilpotency k − 1. Thus, by the
inductive hypothesis, we have that

im(T ) = C(v1)⊕ · · · ⊕ C(vℓ)

for some ℓ′, and this is unique up to dimension of the cyclic subspaces and number of summands. Let
ki = dim(C(vi)). Then, the set

ℓ⋃
i=1

{vi, T (vi), . . . , T ki−1(vi)}

is a basis for im(T ). By the Rank-Nullity Theorem, we have that dim(V ) = dim(im(T )) + dim(ker(T )), so in
order to extend this to a basis of V , we must produce dim(ker(T )) new basis vectors. We notice that

{T k1−1(v1), . . . , T
kℓ−1(vℓ)}

are ℓ basis vectors which are already in ker(T ), so choose {u1, . . . , uj} (with j = dim(ker(T ))− ℓ) to extend
this to a basis of ker(T ), which is linearly independent from the basis for im(T ). It remains to find ℓ more
basis vectors for V . Since vi ∈ im(T ) for all i, choose wi such that T (wi) = vi, and we note there are precisely
ℓ such wi. We claim that the set

{w1, . . . , wℓ} ∪ {u1, . . . , uj} ∪

(
ℓ⋃

i=1

{vi, T (vi), . . . , T ki−1(vi)}

)
form a basis for V . Since the number of vectors is equal to dim(V ), it suffices to check that these are linearly
independent. Suppose we have a linear combination

a1w1 + · · ·+ aℓwℓ + b1u1 + · · ·+ bjuj +

ℓ∑
p=1

ki−1∑
q=0

T q(vp) = 0

Then, applying T to the entire expression, we have that

a1v1 + · · ·+ aℓvℓ +

ℓ∑
p=1

ki−1∑
q=0

T q+1(vp) = 0

which is a linear combination of the basis for im(T ), and thus each ai must be 0. What remains is a basis of
im(T ) + ker(T ) by construction, and therefore must also satisfy linear independence. Note that adding wi

to the basis replaces C(vi) with C(wi), so we write

V = C(w1)⊕ · · · ⊕ Cwℓ
⊕ C(u1)⊕ · · ·C(uj)

which gives the desired decomposition. Furthermore, note that ℓ is determined by the decomposition of
im(T ), which is assumed to be unique, and j = dim(ker(T )) − ℓ is determined by ker(T ) and ℓ, so this
decomposition is indeed unique up to reordering and dimension of components.

Using this decomposition, we can make a very important statement about matrices.

Definition. An n× n square matrix is said to be a nilpotent Jordan block if it is of the form

0 1
0 1

0 1
. . . . . .

0 1
0


where all entries are 0 aside from the superdiagonal, on which all entries are 1.
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Corollary. Let T : V → V be a nilpotent map. Then, we can choose a basis for V in which T has matrix
representation

MT =


J1

J2
. . .

Jk


where each Ji is a nilpotent Jordan block, and this representation is unique up to reordering of the blocks.

Proof. Suppose that T is nilpotent. Then, decompose V as a direct sum of cyclic subspaces as

V = C(v1)⊕ · · · ⊕ C(vk)

Then, restricting T to C(vi) and setting ki = dim(C(vi)), we see that on the basis {w0, . . . , wki−1} =
{v, T (v), T 2(v), . . . , T ki−1(v)}, the map T acts as

T (wj) =

{
wj+1 j < ki − 1

0 j = ki − 1

and so restricted to C(vi), the map T has the matrix representation

T |C(vi) =



0 1
0 1

0 1
. . . . . .

0 1
0


of size ki × ki. Note that this takes our above basis in the reverse order. A similar argument can be used
to instead place all ones on the subdiagonal, using the above basis ordering, so the choice of diagonal is
generally taken as a convention to be above the main diagonal (although many authors will disagree). Thus,
taking such a choice of basis on each C(vi) gives precisely a nilpotent Jordan block of size ki, which gives
our desired decomposition.

An interesting consequence of this fact is the following.

Corollary. Let T : V → V be a nilpotent linear map. Then, tr(T ) = 0.
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13 Generalized Eigenspaces and Jordan Normal Form

Planned Lecture Date(s): July 21st, 2023.

We saw previously that under certain very nice conditions, we could diagonalize a linear map T : V → V ,
and decompose it into a collection of linear maps on invariant subspaces. However, this required some
restrictive assumptions, and we attempt to relax these assumptions here. Let’s illustrate some subtleties of
what could go wrong.

Let V = R3. Suppose T is represented by the matrix

MT =

3 0 0
0 3 0
0 0 1


Then, we compute the characteristic polynomial to be

det(T − λ Id) = det

3− λ 0 0
0 3− λ 0
0 0 1− λ

 = −(λ− 3)2(λ− 1)

and we see that λ = 3 is a root of this polynomial, with multiplicity 2. Since the characteristic polynomial
has a repeated root, we cannot simply apply our previous construction for an invariant subspace decom-
position. The only possible eigenvalues for MT is λ = 3 and λ = 1. We then consider

ker(T − 3 Id) = ker

0 0 0
0 0 0
0 0 −2

 =


a
b
0

∣∣∣∣∣∣ a, b ∈ F


and we see that V3 = ker(T − 3 Id) is a 2-dimensional subspace of R3. Since λ = 1 is also an eigenvalue, V1

has dimension at least 1, and is linearly independent with any two basis vectors in V3, so V1 has dimension
exactly 1. We can then write

V = V3 ⊕ V1

and we have expressed V as a direct sum of invariant subspaces, and we can write MT in block form as

MT =

(
M1,1

M2,2

)
where M1,1 is a 2 × 2 square matrix corresponding to V3, and M2,2 is a 1 × 1 square matrix corresponding
to V1. However, since M maps any v ∈ V3 to 3v, we know that M |V3 = 3 Id, so any basis for V3 will consist
of two eigenvectors of M . Using a choice of basis for V3, we have that

M1,1 =

(
3 0
0 3

)
and combining that with a choice of basis for V1, we can write MT in diagonal form (and it turns out that
it already is in diagonal form). In this case, we were still able to diagonalize MT , even though there was a
repeated root in the characteristic polynomial. However, this is not always true: consider the example of

MT =

3 1 0
0 3 0
0 0 1


We compute the characteristic polynomial to be the same, as we have

p(λ) = −(λ− 3)2(λ− 1)

43



Solving for V3, we see that

ker(T − 3 Id) = ker

0 1 0
0 0 0
0 0 −2

 =


a
0
0

∣∣∣∣∣∣ a ∈ F


and unfortunately, this space is only dimension 1. It turns out that V1 is also dimension 1, and so we have
that V3 ⊕ V1 is only dimension 2, inside of V , which is dimension 3. The issue appears to be the following:
the eigenvalue 3 occupied 2 roots worth of space, but only contributed 1 dimension of eigenspace. This
leads us to make the following definitions.

Definition. Let V be an F -vector space, and let T : V → V be a linear map. Let λ be an eigenvalue of T .
Then, we define...

• ...the algebraic multiplicity of λ to be multiplicity of the root t = λ in the characteristic polynomial
p(t) for T . In other words, it is the number of times the factor (x − λ) occurs in the factorization of
p(t).

• ...the geometric multiplicity of λ to be dim(ker(T − λ Id)). In other words, it is the dimension of the
eigenspace associated to λ.

Theorem. Let V be an F -vector space, and let T : V → V be a linear map. Let λ be an eigenvalue of T .
Then, the algebraic multiplicity of λ is at least the geometric multiplicity of λ.

Proof. Fix an eigenvalue λ of T , and suppose it has geometric multiplicity k. Then, we have that dim(ker(T−
λ Id)) = k, so choose a basis {v1, . . . , vk} for ker(T − λ Id). Extend this to a basis {v1, . . . , vn} of V . Let M be
the matrix with columns

M =


...

...
...

...
v1 v2 · · · vn−1 vn
...

...
...

...


Then, we have that

(A− t Id)M =


...

...
...

...
(λ− t)v1 · · · (λ− t)vk (A− t Id)vk+1 · · · (A− t Id)vn

...
...

...
...


Taking a determinant on both sides, we have that

det(A− t Id) det(M) = (λ− t)k det




...
...

...
...

v1 · · · vk (A− t Id)vk+1 · · · (A− t Id)vn
...

...
...

...




and since det(M) is a constant which does not depend on t, we have that the characteristic polynomial
det(A− t Id) has a factor of (λ− t)k, so the algebraic multiplicity of λ is at least k, as desired.

We’ve therefore created a condition for diagonalizability: for each eigenvalue of T , the algebraic multiplicity
is always greater than or equal to the geometric multiplicity. If these quantities are equal for every eigenvalue,
then using our previous construction, each Vλ has the right dimension corresponding to the number of times
λ is a root of the characteristic polynomial. If furthermore, the characteristic polynomial p(t) has all n roots
(counting multiplicity) in F , then by our previous argument, we can direct sum these to create all of V . We
summarize this in the following manner.
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Theorem. Let V be an F -vector space of dimension n, and let T : V → V be a linear map. Let p(t) denote
the characteristic polynomial of T . Suppose p(t) has n roots in F (counting multiplicity), and each root λi

has algebraic multiplicity equal to its geometric multiplicity. Then, we can write

V =

k⊕
i=1

Vλi

where k is the number of distinct roots. Furthermore, T |Vλi
= λi Id on Vλi

, and so we can choose a basis of
eigenvectors in which T is of the form

T =


M(λ1)

M(λ2)
. . .

M(λk)


where M(λi) denotes the block λi Id of size equal to the multiplicity of λi. Therefore, T is diagonalizable.

If the geometric multiplicity does not agree with the algebraic multiplicity, is there anything that we can
do? It turns out the answer is yes. For now, we will assume that F is algebraically closed (often abbreviated
as F = F ), to ensure that the characteristic polynomial does indeed have all of its roots (but possibly not
distinct).

Definition. Let V be an F -vector space of dimension n, and let T : V → V be a linear map. Let λ be an
eigenvalue of T . Then, we can define the generalized eigenspace associated to λ as

V[λ] = {v ∈ V | ∃ n ≥ 1 such that (T − λ Id)n(v) = 0}

One can check that this indeed forms a subspace, and note that this would agree with the definition of
an eigenspace if we only allowed n = 1. Our goal is to use these generalized eigenspaces in place of our
regular eigenspaces. Note that

ker((T − λ Id)) ⊂ ker((T − λ Id)2) ⊂ ker((T − λ Id)3) ⊂ · · · ⊂
∞⋃
i=1

ker((T − λ Id)i) = V[λ]

and furthermore, each ker(T − λ Id)k is a subspace of V . Since this is an increasing sequence of subspaces
of V , and V is finite-dimensional, this chain must eventually stabilize for some N , and so we have that

V[λ] = ker((T − λ Id)N ) = ker((T − λ Id)M )

for all M > N .

Lemma. We have that V = ker((T − λ Id)N )⊕ im((T − λ Id)N ).

Proof. We first show ker((T − λ Id)N ) ∩ im((T − λ Id)N ) = {0}. Let v ∈ ker((T − λ Id)N ) ∩ im((T − λ Id)N ).
Then, (A− λ Id)Nv = 0, and furthermore we can find w ∈ V with (A− λ Id)Nw = v. Then, we have that

(A− λ Id)2N (w) = (A− λ Id)N (A− λ Id)N (w) = (A− λ Id)N (v) = 0

Thus, w ∈ ker((A− λ Id)2N ) = ker((A− λ Id)N ), so v = 0 as desired.

Then, we have that ker((T−λ Id)N )⊕im((T−λ Id)N ) is a subspace of V of dimension dim(ker((T−λ Id)N ))+
dim(im((T − λ Id)N )) = dim(V ) by Rank-Nullity, so these are equal, as desired.

Theorem. Let V be an F -vector space of dimension n, and let T : V → V be a linear map. Let λ1, . . . , λk be
the distinct eigenvalues of T . Then, we can decompose

V =

k⊕
i=1

V[λ]
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Proof. We first check that ker((T − λ Id)N ) and im((T − λ Id)N ) are invariant subspaces. Note that T com-
mutes with T − λ Id, so we have that

• For v ∈ ker((T − λ Id)N ), we have that (T − λ Id)N (T (v)) = T ((T − λ Id)N (v)) = 0, so T (v) ∈
ker((T − λ Id)N ).

• For v ∈ im((T − λ Id)N ), there exists w ∈ V with (T − λ Id)N (w) = v. Then, (T − λ Id)N (T (w)) =
T ((T − λ Id)N (w)) = T (v), so T (v) ∈ im((T − λ Id)N ).

We now show the following: the only eigenvalue of T on ker((T − λ Id)N ) is λ, and furthermore λ is not an
eigenvalue of T on im((T − λ Id)N ).

• Note that (T − λ Id)N−1(w) for any w ∈ V will be an eigenvector of T in ker((T − λ Id)N ) with
eigenvalue λ, so λ is certainly an eigenvalue of T on ker((T − λ Id)N ). If λ′ is another eigenvalue with
eigenvector 0 ̸= w ∈ ker((T − λ Id)N ), then (T − λ Id)w = (λ′ − λ)w, but since w is in the kernel, we
have that

0 = (T − λ Id)N (w) = (λ′ − λ)N (w)

and so (λ′ − λ)k = 0, which implies λ = λ′.

• Suppose that λ was an eigenvalue of T in im((T − λ Id)N ). Then, for some v ∈ im((T − λ Id)N ), we
would have T (v) = λv. But then (T − λ Id)v = 0, so v ∈ ker(T − λ Id) ⊂ ker((T − λ Id)N ). However,
we proved that ker((T − λ Id)N ) ∩ im((T − λ Id)N ) = {0}, which is a contradiction. Thus, λ is not an
eigenvalue for T in im((T − λ Id)N ).

We now proceed by strong induction on dim(V ). When dim(V ) = 0, this statement holds vacuously. Sup-
pose dim(V ) = n, and let T have eigenvalues λ1, . . . , λk. Then, we can write

V = ker((T − λ1 Id)
N1)⊕ im((T − λ1 Id)

N1)

Since λ1 is an eigenvalue, we have that dim(ker((T −λ Id)N1)) ≥ 1 since it contains at least the eigenvectors
associated to λ1, so dim(im((T − λ1 Id)

N1)) < dim(V ). Furthermore, by our above work, the eigenvalues
associated with im((T − λ1 Id)

N1) are precisely λ2, . . . , λk. We then obtain our result by induction.

Corollary. We have that dim(V[λ]) is the algebraic multiplicity of λ.

Proof. Let n(λ) denote the algebraic multiplicity of λ. Note that since V is the direct sum of the V[λ], the
characteristic polynomial is the product of the characteristic polynomials restricted to each component (this
follows from picking a block diagonal matrix). Since the only component which contributes factors of (t−λ)
to the characteristic polynomial of T is ker((T − λ Id)N ), and T restricted to this space has only eigenvalue
λ, and thus characteristic polynomial (t− λ)dim(V[λ]), we have that n(λ) = dim(V[λ]) as desired.

We’ve therefore concluded that we can write T in block form as

T =


M(λ1)

M(λ2)
. . .

M(λk)


where each matrix M(λi) is a square matrix of size dim(V[λ]) on the V[λ] component. The question remains
to figure out what each M(λi) should be.

We notice that T − λi Id restricted to V[λi] is nilpotent on V[λi]. Thus, we can make a definition to finish off
our work.
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Definition. An n × n square matrix is said to be a Jordan block (associated to the eigenvalue λ) if it is of
the form 

λ 1
λ 1

λ 1
. . . . . .

λ 1
λ


where all entries are 0 aside from the diagonal, on which all entries are λ, and the superdiagonal, on which
all entries are 1.

Using this theorem, we can conclude the following result.

Theorem. (Jordan Normal/Canonical Form) Let V be an F -vector space of dimension n, let T : V → V be a
linear map, and suppose that the characteristic polynomial p(t) has n roots in F , counted with multiplicity,
denoted λ1, . . . , λk. Then, we can find a basis of V such that the matrix representation of T is given by

MT =


J1

J2
. . .

Jℓ


where each Ji is a Jordan block associated to some eigenvalue λj . Furthermore, this matrix representation is
unique up to reordering the Jordan blocks. Additionally, we have that for any eigenvalue λj , the geometric
multiplicity is given by the number of Jordan blocks corresponding to λj , and the algebraic multiplicity is
given by the sum of the sizes of all Jordan blocks corresponding to λj .

Proof. We’ve shown previously that T decomposes into M(λi) on V[λi], and T − λi Id is nilpotent on V[λi].
Thus, we can choose a basis in which T − λi Id is in nilpotent Jordan block form, and thus T restricted to
V[λi] is in Jordan block form (associated to the same eigenvalue). Plugging this in for each M(λi) gives the
desired result, and the statements about geometric and algebraic multiplicity are true by construction.

This gives us a canonical form to represent linear maps! Even if our matrix is not diagonalizable, we can
still put it into Jordan Normal Form, as long as F is algebraically closed. The advantage of canonical forms
is that we have a standard way to make arguments about matrices. For example, here is a very important
theorem.

Theorem. (Cayley-Hamilton) Let T : V → V be a linear map with characteristic polynomial p(t). Then,
p(T ) = 0.

Proof. I’ll prove this for a matrix in Jordan Normal Form, and leave the rest as homework. Note that p(t)
factors as

p(t) = (t− λ1)
N1 · · · (t− λk)

Nk

and note that for any v ∈ V , we can decompose v into a linear combination of elements of the generalized
eigenspaces V[λi]. Then, applying p(T ) to v with T , we see that each factor (T − λi)

Ni either leaves each
component untouched, or sends it to 0. Thus, all vectors v ∈ V are sent to 0, so p(T ) = 0 as desired.

We can also return to some previous statements, which we could only prove when T was diagonalizable.

Theorem. Let V be an F -vector space (F = F ), and T : V → V a linear map. Then, we have that det(T )
is the product of the eigenvalues (counting multiplicity), and tr(T ) is the sum of the eigenvalues (counting
multiplicity).

Proof. We put T in Jordan Normal Form, and compute trace and determinant.
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There is one last issue to address, however: if F is not algebraically closed, we may be in trouble. There
are a few ways to fix this situation: if we are computing matrices over any field F , we could simply pass
to F , and pretend that our matrix T is really defined over the larger field F . We frequently see this done
implicitly when computing eigenvalues of R-matrices by passing to C. However, we can make the follow-
ing observation: if for some fixed transformation T , if F contains all eigenvalues of T , then we can put T in
Jordan Normal Form even if F is not algebraically closed! We only need F to contain the eigenvalues of T
in order to do so.

Another final observation is the following. If F does not contain the eigenvalues of T , we know that F
certainly does. Then, both the sum and product of the eigenvalues of T can be computed in F , but they can
also be computed with a matrix representation for T over F , which we then implicitly think of as a matrix
with F entries. Since these must agree, as determinant and trace are invariant under change of basis, we
conclude that the sum and product of the eigenvalues in F must actually be an element of F ! You’ll see on
homework that this can be seen through another viewpoint as coefficients of the characteristic polynomial.

Example. Consider the matrix

M =

(
0 −1
1 0

)
as a map M : R2 → R2. One may notice that this corresponds to the matrix which rotates R2 by an angle of
π
2 . We compute the characteristic polynomial to be

p(λ) = λ2 + 1

which has no roots over R, but over C has roots ±i. We have that tr(M) = i + (−i) = 0 and det(M) =
(i)(−i) = 1, and so the rules regarding sums and products of eigenvalues still holds, even though the trace
and determinant are purely real numbers.

One interesting application of Jordan Normal Form occurs in the following manner. We can define the
exponential of a matrix as follows.

Definition. Let M be an n× n matrix over a field F , with char(F ) = 0. Then, we define

exp(M) = Id+M +
1

2
M2 + · · · =

∞∑
i=1

1

i!
M i

We will sometimes write eM to mean exp(M).

Taking the exponential of a matrix often shows up in various applications, such as solving systems of
ordinary differential equations, or relating Lie Algebras to Lie Groups. Showing that this infinite sum
converges (or even makes sense) is a question for analysis, but if we suspend our disbelief momentarily, we
can consider the following.

Theorem. Let M be an n × n diagonalizable matrix, and let M = P−1DP , where D is a diagonal n × n
matrix, and P is an invertible n× n matrix. Then, we have that

exp(M) = P−1 exp(D)P

Proof. We have that

exp(M) = exp(P−1DP )

=

∞∑
i=1

1

i!
(P−1DP )i

=

∞∑
i=1

1

i!
P−1(D)iP
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= P−1

( ∞∑
i=1

1

i!
(D)i

)
P

= P−1 exp(D)P

which is our desired result.

The interesting consequence here is that exp(D) is incredibly easy to compute, since D is diagonal. We see
that sums and products of the diagonal entries do not interact, and thus we have that if

D =


a1,1

a2,2
. . .

an,n



exp(D) =


1

1
. . .

1

+


a1,1

a2,2
. . .

an,n

+
1

2


a21,1

a22,2
. . .

a2n,n



=


1 + a1,1 +

1
2a

2
1,1

1 + a2,2 +
1
2a

2
2,2

. . .
1 + an,n + 1

2a
2
n,n



=


exp(a1,1)

exp(a2,2)
. . .

exp(an,n)


and we can simply perform two matrix multiplications with P and P−1 to compute exp(M). However, if
D is not diagonalizable, this trick gets slightly more complicated (but we can still salvage something!). If D
is instead taken to be in Jordan Normal Form, then on each block, we have that

D|Vλ
= λ Id+N

where N is a nilpotent operator. Thus, we have that

exp(M) = P−1 exp(D)P = P−1 exp(λ Id+N)P = P−1 exp(λ Id) exp(N)P = eλP−1 exp(N)P

where one can check that the exponential is still multiplicative on matrices. Note that taking the exponential
of λ Id is easy, since this is diagonal, but furthermore, taking exp(N) is also not too difficult, since N is
nilpotent! Thus, some finite power of N will be 0, so exp(N) is in fact a finite sum of powers of N , together
with coefficients.
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14 Bilinear Forms

Planned Lecture Date(s): July 31st, 2023.

We recall from a few weeks ago that if V is an F -vector space of dimension n, then we can define the set
Hom(V 2;F ) to be the set of bilinear forms, or in other words, multilinear maps from V × V to F . How can
we represent bilinear forms in coordinates? Let’s fix a basis {v1, . . . , vn} for V . Then, fix w,w′ ∈ V with

w = a1v1 + · · ·+ anvn w′ = b1v1 + · · ·+ bnvn

Then, we compute that

B(w,w′) = B

 n∑
i=1

aivi,

n∑
j=1

bivi


=

n∑
i=1

n∑
j=1

aibjB(vi, vj)

=

n∑
i=1

ai

n∑
j=1

bjB(vi, vj)

=
(
a1 a2 · · · an

)


n∑
j=1

bjB(v1, vj)

n∑
j=1

bjB(v2, vj)

...
n∑

j=1

bjB(v3, vj)



=
(
a1 a2 · · · an

)

B(v1, v1) B(v1, v2) · · · B(v1, vn)
B(v2, v1) B(v2, v2)

...
. . .

B(vn, v1) B(vn, vn)



b1
b2
...
bn


and we notice that the matrix in the middle is constant, once we have fixed a basis for V . This matrix
therefore represents a bilinear form! We want to think about this matrix in a slightly different manner than
usual, however, since we are used to matrices representing linear transformations, but here our matrix acts
on a vector on both sides.

More abstractly, we can think of this in the following way: if we fix a basis for V , and construct the corre-
sponding dual basis for V ∗, then for B ∈ Hom(V 2;F ) and v, w ∈ V , then B is of the form

B(v, w) = λv(T (w))

for some uniquely determined linear map T : V → V .

Definition. Let B ∈ Hom(V 2;F ). Then, B is said to be...

• ...symmetric if B(v, w) = B(w, v) for all v, w ∈ V .

• ...anti-symmetric if B(v, w) = −B(w, v) for all v, w ∈ V .

• ...alternating if B(v, v) = 0 for all v ∈ V .

These definitions should be familiar from when they were defined for multilinear maps, but since we can
relate these to matrices, we have a useful way of checking these properties.
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Theorem. Let B ∈ Hom(V 2;F ). Then, B is symmetric (resp. anti-symmetric) if and only if the matrix
representation of B is symmetric (resp. anti-symmetric).

Proof. This follows from the entries of the matrix representation being the evaluation of B on the basis
vectors.

We have an additional definition, which is something we might not have seen before.

Definition. Let B ∈ Hom(V 2;F ). Then, B is said to be nondegenerate if B(v, w) = 0 for all w ∈ V implies
v = 0.

Let’s first relate this to a matrix condition.

Theorem. Let B ∈ Hom(V 2;F ). Then, B is nondegenerate if and only if the matrix associated to B is
invertible.

Proof. Let A be the matrix associated to B.

Suppose B is nondegenerate. We have that

B(v, w) = vTAw

and so fixing v ∈ V , we suppose that vTA as a map from V to F sends every w to 0. Then, by Rank-Nullity,
we have that

dim(V ) = dim(ker(vTA)) + dim(im(vTA)) = dim(V ) + dim(im(vTA))

and thus im(vTA) = {0}. Thus, vTA sends every vector to 0, and therefore is the 0 map. Since 0 = vTA =
(AT v)T , we must have that v ∈ ker(AT ). Since B is nondegenerate, v = 0, so we have that ker(AT ) = {0}.
Thus, 0 ̸= det(AT ) = det(A), as desired.

Suppose det(A) ̸= 0. Fix v ∈ V , and suppose that B(v, w) = 0 for all w ∈ W . Then, we have that vTAw = 0
for all w, so vTA is the zero map from V to F . Since 0 ̸= det(A) = det(AT ), we must have that AT is
invertible, so 0 = vTA = (AT v)T implies that v = 0.

The idea of the theorem is that we treat vTA as a linear map from V to F . We have a name for such maps!
This is an element of the dual space, and we have a more formal way of thinking about this which we have
seen before.

Theorem. Let B ∈ Hom(V 2;F ). Then, for all v ∈ V , the map

B(v,−) : V → F

w 7→ B(v, w)

is an element of V ∗.

Proof. This follows from the fact that B is multilinear.

We previously saw this in the context of currying, where we input one element into a k-linear form, and
treat the rest as a (k − 1)-linear form. However, when B is nondegenerate, we can actually say something
more!

Theorem. Let B ∈ Hom(V 2;F ). Then, B is nondegenerate if and only if the map

φ : V → V ∗

v 7→ B(v,−)

is an isomorphism of vector spaces.
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Proof. Suppose B is nondegenerate. First note that the assignment v 7→ B(v,−) is linear since B is multilin-
ear, and thus linear in the first component. Then, if φ(v) = B(v,−) is the zero map, then by nondegeneracy
of B, we must have that v = 0. Thus, φ is injective. Furthermore, since dim(V ) = dim(V ∗), we must have
that φ is an isomorphism, as desired.

Suppose that φ is an isomorphism. Then, φ is injective, so if φ(v) = B(v,−) = 0, then we must have v = 0,
which implies that B is nondegenerate.

The idea here is that nondegenerate bilinear forms give us an isomorphism between V and V ∗. This doesn’t
necessarily require us to pick a basis to define, but it does require the additional information of a nonde-
generate bilinear form, and different choices of this form will give different isomorphisms.

Our nondegenerate form is actually slightly stronger, since not only does it give us an isomorphism, but it
can also provide us a basis for the dual! Recall that given a basis {v1, . . . , vn} for V , we can construct a dual
basis {ε1, . . . , εn} for V , with the property that

εi(vj) =

{
1 i = j

0 i ̸= j

Given a basis {v1, . . . , vn}, we can construct a dual basis in a similar manner, by considering

B(v, w) = vTAw

Then, from our previous dual basis construction, we’d like vTA = wT , so we can simply choose vT =
(v′i)

T = wTA−1, and the collection {v′1, . . . , v′n} forms a basis for V which is dual to {v1, . . . , vn}, in the sense
that

B(vi, v
′
j) =

{
1 i = j

0 i ̸= j

and this construction creates a basis ”dual” to our original, with respect to B.

We finish off this section with an interesting topic: suppose we have a nondegenerate bilinear form B ∈
Hom(V 2;F ), and we examine

B(v, T (w))

for some linear map T . In terms of matrices, if A is the matrix which represents B, and MT is the matrix
which represents T , we have

B(v,MT (w)) = vTA(MTw) = (vTAMT )w = vT (AMTA
−1)Aw = ((M ′

T )
T v)T = B(M ′T

T (v), w)

where A−1 exists as B is nondegenerate, so A is invertible. Note that M ′
T represents T after a change of

basis via A from MT . In some sense, we’ve related performing T in the second component to performing a
related map for T in the first component. This motivates us to make a definition.

Definition. Suppose T : V → V is a linear map, and B ∈ Hom(V 2;F ) is a bilinear form. Then, if it exists,
the map T † : V → V is said to be the adjoint of T if for all v, w ∈ V , we have that

B(v, T (w)) = B(T †(v), w)

Theorem. If B is nondegenerate, then adjoint maps always exist.

Proof. Fix a basis {v1, . . . , vn} for V . Then, we want to define a linear map T † : V → V , so it suffices to
define it on the basis. We therefore need to find images for T †(vi) in V such that

B(T †(vi), w) = B(vi, T (w))

for all w ∈ W . However, since B is nondegenerate, the map v 7→ B(v,−) is an isomorphism, and so defining
the map B(v,−) uniquely determines v. Since we have defined

B(T †(vi),−) : w 7→ B(vi, T (w))

we have completely defined the map B(T †(vi),−), so this uniquely determines a vector T †(vi) via our
isomorphism. Thus, we have defined T †, which has the adjoint property by construction.
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However, we can also think about the adjoint map in a different way! Instead of thinking about the adjoint
as the map which satisfies

B(v, T (w)) = B(T †(v), w)

we can instead think of the operation on the left as taking an element B(v,−) ∈ V ∗, and precomposing
with the map T . The map

T ∗ : V ∗ → V ∗

λ 7→ λ ◦ T

is one we’ve encountered before: this is precisely the dual map! Thus, the composition of B(v,−) with T is
precisely the image of B(v,−) under the dual map, which outputs an element of the dual. Composing this
with the isomorphism (in reverse) of v 7→ B(v,−) precisely identifies each B(w,−) with an element of V
under a composition of linear maps, and so this map is precisely the adjoint! We can attempt to understand
this through the following diagram.

V V

V ∗ V ∗

T

v 7→B(v,−) v 7→B(v,−)

T∗

Starting with w ∈ V on the top right, we follow the isomorphism downward to get B(w,−), and then the
dual map identifies with B(w,−) ◦ T , which is precisely B(w, T (−)). However, this element of V ∗ must
correspond to B(w′,−) for some w′ ∈ V , and the choice of w′ comes from the isomorphism on the left (in
reverse). Thus, this entire map is linear, so we’ve defined T † to satisfy precisely the properties we want.
You can think of the adjoint as corresponding to the dual map, once we’ve used B to create an isomorphism
from V to V ∗.
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15 Inner Product Spaces

Planned Lecture Date(s): August 2nd, 2023.

So far, our vector spaces have not had the structure to define a notion of length. Using the tools of bilinear
forms, we will work towards a setting in which we can talk about ”distance”. The first thing to note is that
distance is intrinsically a notion that requires order (we need a notion of greater than or less than), and so
the most natural setting to work in is a field with an ordering. There are many ways we can define this, but
the main takeaway is that we should use the field of real numbers, R, as the field over which our distances
are defined.

For now, we’ll restrict to the case where F = R. It turns out that much of the theory still goes through when
F = C, but we have to make some slight changes to keep the desired properties, so we’ll address this later.

Definition. Let V be an R-vector space. A inner product on V is a symmetric bilinear form on V , often
denoted ⟨·, ·⟩, satisfying the property that for all v ∈ V , ⟨v, v⟩ ≥ 0, and furthermore ⟨v, v⟩ = 0 if and only if
v = 0. The R-vector space V , together with the inner product ⟨·, ·⟩, is said to be a inner product space.

The property that an inner product satisfies is often called positive definiteness, and we think of the quan-
tity ⟨v, v⟩ as the ”length” of v (possibly squared), so it should be a non-negative quantity. Thus, having an
inner product allows us to define a notion of length in V . Note that positive-definiteness requires a notion
of inequality, which only makes sense in an ordered field.

The most common example of an inner product that we are likely familiar with is the Euclidean dot product,
as given v, w ∈ Rn, we can define

v⃗ · w⃗ =


a1
a2
...
an

 ·


b1
b2
...
bn

 =

n∑
i=1

aibi

Recall from vector calculus that v⃗ · w⃗ = ||v⃗|| · ||w⃗|| cos(θ), where θ is the angle between v⃗ and w⃗. We can
think of this as a measure of alignment between v and w: if v and w are generally in the same direction,
then θ should be small, so the dot product comes close to attaining it’s maximum possible value, ||v⃗|| · ||w⃗||.
Similarly, if v and w point in very different directions, the dot product will be close to 0. This is the intuition
we want to keep when dealing with general inner products: the inner product ⟨v, w⟩ is a measure of how
closely v and w ”align”, as determined by this inner product.

Definition. Let V be an inner product space. Two vectors v, w ∈ V are said to be orthogonal if ⟨v, w⟩ = 0.
A set of vectors is said to be orthogonal if they are pairwise orthogonal.

Definition. Let V be an inner product space, and let W ⊂ V . Then, we can define the orthogonal comple-
ment of W to be the space

W⊥ = {v ∈ V | ⟨v, w⟩ = 0 ∀ w ∈ W}

It turns out that W⊥ is indeed a subspace (with some interesting properties!), which you will verify on
homework.

Intuitively, orthogonal vectors are vectors which are maximally distinct, and align with each other as little
as possible, so there is minimal redundant information carried by the vectors. As such, it may be a good
idea to find a basis which is orthogonal.

Definition. Let V be an inner product space. Then, an orthogonal basis is a basis for V which is (pairwise)
orthogonal. Furthermore, if {v1, . . . , vn} is a basis for V , then it is said to be an orthonormal basis if

⟨vi, vj⟩ =

{
1 i = j

0 i ̸= j
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Note that an orthonormal basis is an orthogonal basis which additional requires each basis vector to have
”length” equal to 1. Given an orthogonal basis, we can simply scale each vi by 1√

⟨vi,vi⟩
to normalize vi to

have length 1.

A very convenient trick is the following: if {v1, . . . , vn} is an orthonormal basis for V , then we can write
any v ∈ V as

v = c1v1 + · · ·+ cnvn

If V were simply a vector space without an inner product, it would be fairly difficult to find the coefficients
ci, but using our inner product, we see that

⟨vi, v⟩ = ⟨vi, c1v1 + · · ·+ cnvn⟩

=

n∑
j=1

cj ⟨vi, vj⟩

= ci

and therefore in order to recover the coefficients, we can simply use the inner product to ”measure” them
out.

The question to ask is then: how can we construct an orthonormal basis? Let’s develop a tool to create
them.

Definition. Let V be an inner product space, and let v, w ∈ V . Then, we define the projection of v onto w as

projw(v) =
⟨v, w⟩
⟨w,w⟩

w

Note that this is an element of span(w).

We want to think of this as the shadow of v onto span(w), as the inner product ⟨v, w⟩ tells us how much
v aligns with w, and the vector 1

⟨w,w⟩w is a vector of length 1 in span(w). Using these projections, we will
create a process that constructs orthonormal bases.

Theorem. Let V be an inner product space, and let {v1, . . . , vn} be any basis for V . Perform the following
process:

• Set w1 = v1.

• For 1 ≤ k ≤ n (sequentially), let wk = vk −
k−1∑
i=1

projwi
(vk).

• Set uk = 1√
⟨wk,wk⟩

wk.

Then, the set {u1, . . . , un} is an orthonormal basis for V . This process is known as the Gram-Schmidt
Orthonormalization Process.

Proof. We first show that the wk, as constructed, form an orthogonal basis. We proceed by induction on k,
proving the statement that the set {w1, . . . , wk} are (pairwise) orthogonal. When k = 1, this is vacuously
true. Suppose this holds for k − 1. We show that wk is orthogonal with wj for j < k. We compute

⟨wk, wj⟩ =

〈
vk −

k−1∑
i=1

projwi
(vk), wj

〉

= ⟨vk, wj⟩ −
k−1∑
i=1

〈
projwi

(vk), wj

〉

55



= ⟨vk, wj⟩ −
k−1∑
i=1

〈
⟨vk, wi⟩
⟨wi, wi⟩

wi, wj

〉

= ⟨vk, wj⟩ −
k−1∑
i=1

⟨vk, wi⟩
⟨wi, wi⟩

⟨wi, wj⟩

By the inductive hypothesis, we have 1 ≤ i, j ≤ k − 1, so wi and wj are orthogonal when i ̸= j, so we have

= ⟨vk, wj⟩ −
⟨wi, wi⟩
⟨wi, wi⟩

⟨vk, wj⟩

= ⟨vk, wj⟩ − ⟨vk, wj⟩
= 0

We therefore conclude that wk is orthogonal with each wj for 1 ≤ j < k. Thus, the set {w1, . . . , wn} is
orthogonal. By construction, the set {u1, . . . , un} is then orthonormal, as desired.

The strength of Gram-Schmidt is that given any basis, we can produce an orthonormal basis which ”agrees”
with our original basis as much as possible. We can think of the process as iteratively ”throwing out” the
parts of each basis vector which are not orthogonal, and thus we are left with only the orthogonal parts.

Although we have our standard Euclidean inner product, we can actually think about alternative inner
products. Here are some examples.

Example. Let V = R2, and consider...

• the candidate inner product 〈(
x1

x2

)
,

(
y1
y2

)〉
= 2x1y1 + 2x2y2

• the candidate inner product〈(
x1

x2

)
,

(
y1
y2

)〉
= 2x1y1 − x1y2 − x2y1 + 3x2y2

• the candidate inner product〈(
x1

x2

)
,

(
y1
y2

)〉
= 4x1y1 − 3x1y2 − 3x2y1 + 2x2y2

Which of these are actually inner products?

The answer is a bit tricky: we can easily check that they’re all symmetric and bilinear, but checking pos-
itive definiteness is harder. If we write these symmetric bilinear forms as matrices, we see that they are
represented by the matrices (

2 0
0 2

)
,

(
2 −1
−1 3

)
,

(
4 −3
−3 2

)
and we can rephrase the question using the following definition.

Definition. A matrix M is positive definite if vTMv > 0 for all v ̸= 0.

We can then ask which of these matrices are positive definite. This can be checked using an equivalent
condition.

Theorem. Let M be a symmetric n× n matrix. Then, M is positive definite if and only if all eigenvalues of
M are real and positive.

Proof. Homework.
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We see that the first matrix has eigenvalue 2 (with multiplicity 2), which is positive, the second matrix has
eigenvalues 1

2

(
5±

√
5
)

which are both positive, and the third matrix has eigenvalues 3 ±
√
10, which are

not all positive. Thus, the first two define inner products, whereas the third does not.

When the underlying vector space is more complicated, we can also have other inner products.

Example. Let V = C([0, 1]), the space of continuous functions from [0, 1] to R. Then, we can define an inner
product

⟨f, g⟩ =
ˆ 1

0

f(t)g(t) dt

One can check that this does indeed satisfy the inner product axioms. For example, we can construct an
orthogonal basis for this space relative to this inner product!

We also make the following observation.

Theorem. Any inner product is a nondegenerate form.

Proof. Suppose ⟨v, w⟩ = 0 for all w ∈ W . Then, when v = w, we have that ⟨w,w⟩ = 0, so v = w = 0, as
desired.

This tells us that given an inner product space V , we have a canonical isomorphism between V and V ∗.
This does require the additional structure of an inner product, but does not require a basis!

We have a theorem which we may have previously seen in a vector calculus class, but generalizes to the
setting of inner products.

Theorem. (Cauchy-Schwarz) Let V be an inner product space, and let v, w ∈ V . Then, we have that

⟨v, w⟩2 ≤ ⟨v, v⟩ · ⟨w,w⟩

Furthermore, we have equality if and only if v and w are linearly dependent.

Proof. If v = 0 or w = 0, both sides of the inequality are 0, so this statement holds. Otherwise, we show the
equivalent statement that

⟨v, w⟩2

⟨v, v⟩ · ⟨w,w⟩
≤ 1

We have that
⟨v, w⟩2

⟨v, v⟩ · ⟨w,w⟩
=

〈
v√
⟨v, v⟩

,
w√
⟨w,w⟩

〉
and so it suffices to show that for unit vectors v, w ∈ V , we have that

⟨v, w⟩ ≤ 1

We have that

0 ≤ ⟨v − w, v − w⟩
= ⟨v, v⟩ − 2 ⟨v, w⟩+ ⟨w,w⟩
= 2− 2 ⟨v, w⟩
= 2(1− ⟨v, w⟩)

and so we must have ⟨v, w⟩ ≤ 1, as desired.

If v and w are dependent, and either v = 0 or w = 0, then equality holds. Otherwise, without loss of
generality, we have that v = cw for some c ∈ F , and so we have

c2 ⟨v, w⟩2 = ⟨v, cw⟩2 ≤ ⟨v, v⟩ ⟨cv, cv⟩ = c2 ⟨v, v⟩2
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Similarly, if we have equality, then we can reduce to the unit vector case, where ⟨v, w⟩2 = 1. Then, ⟨v, w⟩ =
±1, so we have that

⟨v ∓ w, v ∓ w⟩ = 2(1∓ ⟨v, w⟩)

and so by positive definiteness, v ∓ w = 0, which provides a linear dependence.

Finally, as promised, we discuss what happens if we replace R with C instead. Since we want to associate
⟨v, v⟩ to the length of the vector v, we need to ensure that however we define it, ⟨v, v⟩ will still be a real
number (note that it doesn’t make sense to talk about ⟨v, v⟩ > 0 if it is not real). It turns out that the correct
modifications are the following:

Definition. If V is a C-vector space, an inner product on C is a map ⟨·, ·⟩ : V × V → C satisfying

1. Conjugate Symmetry: ⟨v, w⟩ = ⟨w, v⟩.

2. Linearity in the first argument: ⟨cv1 + v2, w⟩ = c ⟨v1, w⟩+ ⟨v2, w⟩.

3. Positive-definiteness: ⟨v, v⟩ ≥ 0, and ⟨v, v⟩ = 0 if and only if v = 0.

A few things to note: firstly, the convention of linearity in the first argument rather than the second is a
choice. Mathematicians frequently make this choice, whereas physicists tend to make the choice of linearity
in the second component. Note however that the inner product is almost linear in the second component, as
we can use conjugate symmetry to swap to the first component, take out a C-scalar, and conjugate back (also
conjugating the scalar). People will often call this property sesquilinearity, as the prefix ”sesqui-” means
”one and a half”, as the inner product is linear in one component and ”half”-linear in the other. Finally,
note that conjugate symmetry implies that ⟨v, v⟩ = ⟨v, v⟩, so ⟨v, v⟩ is real, so it makes sense to require it to
be positive.

One reason we need to deal with all this complex conjugation is to ensure that our lengths stay real: without
this, if we choose w = iv, then we have that ⟨w,w⟩ = ⟨iv, iv⟩ = −⟨v, v⟩, which is problematic, since we’d
like both of these to be positive.
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16 The Spectral Theorem for Self-Adjoint Operators

Planned Lecture Date(s): August 4th, 2023.

Let’s return to our discussion of adjoint maps for a moment, specifically in the context of the inner product.
If we consider the standard inner product on Rn as

⟨v, w⟩ = vTw

we can consider some matrix A : Rn → Rn, and examine

⟨v,A(w)⟩ = vT (Aw) = (vTA)w = (AT v)Tw =
〈
AT (v), w

〉
and we see that AT indeed represents the adjoint of A. However, when we pass to the case where our base
field is C, we need to make some adjustments to the standard inner product, specifically

⟨v, w⟩ = v∗w

where v∗ denotes the conjugate transpose of v, in that we take the transpose, and also complex conjugate
each entry. One can check that this construction does indeed satisfy sesquilinearity and conjugate symme-
try, as well as positive definiteness, so this does indeed work as an inner product. However, in this new
setting, our adjoint map also changes. Given some matrix A, we can compute

⟨v,A(w)⟩ = v∗(Aw) = (v∗A)w = (A∗v)∗w = ⟨A∗(v), w⟩

and we see that the adjoint is instead A∗, the conjugate transpose of A. This is sometimes called the Hermi-
tian adjoint of A.

Definition. Let V be an inner product space, and let T : V → V be a linear map. T is said to be self-adjoint
if T † = T .

Note that since the definition of the adjoint map relies upon the choice of inner product, this definition also
depends on which inner product is chosen. The reason that self-adjoint maps are nice is the following major
theorem.

Theorem. (Spectral Theorem) Let V be a finite-dimensional inner product space over R or C, and let T :
V → V be self-adjoint. Then, we have that:

• Every eigenvalue of T is real.

• T is diagonalizable.

Proof. We first prove that every eigenvalue of T is real. If V is over R, this statement is automatically true,
so assume V is over C. Suppose λ is an eigenvalue of T , and let v be an associated eigenvector. Then, we
have that

λ ⟨v, v⟩ = ⟨v, λv⟩ = ⟨v, T (v)⟩ = ⟨T (v), v⟩ = ⟨λv, v⟩ = λ ⟨v, v⟩

and since v is an eigenvector, ⟨v, v⟩ ≠ 0, so λ = λ and thus λ ∈ R, as desired.

We then proceed by induction (on the variable n) on the following statement: when dim(V ) = n, we can
decompose V into

V =

n⊕
i=1

Vi

where each Vi is a dimension 1 invariant subspace of V under T . Note that this statement implies that T is
diagonalizable, since choosing one nonzero vector from each Vi forms an eigenbasis for T .

When dim(V ) = 0, V is the empty direct sum of eigenspaces, so we have established the base case.
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Suppose this holds for vector spaces of dimension n − 1. We would like to show that this holds when
dim(V ) = n. Choose an eigenvalue λ of T , and associated eigenvector v. Then, let W = span(v), and
consider

V = W ⊕W⊥

where the sum is direct using a result from homework. We show that W⊥ is an invariant subspace under
T . Fix w ∈ W⊥. We have that

⟨v, T (w)⟩ = ⟨T (v), w⟩ = ⟨λv,w⟩ = λ ⟨v, w⟩ = 0

since ⟨v, w⟩ = 0, and v is an eigenvector of T . Since T is self-adjoint, it restricts to a self-adjoint operator
on W⊥ (think about why!), and so we can apply the inductive hypothesis to W⊥, since dim(W⊥) = n − 1.
Then, relabelling W as Vn, we have that

V = W ⊕W⊥ = Vn ⊕W⊥ = Vn ⊕

(
n−1⊕
i=1

Vi

)

which gives our desired result.

Corollary. Let V be a finite-dimensional inner product space, and T : V → V a self-adjoint map. Then,
eigenvectors associated with distinct eigenvalues are orthogonal.

Proof. From the construction, we see that each Vi is orthogonal, and so the inner product of vectors con-
tained purely in the direct sum of different Vi must be 0. We can also see this directly: Let v1 and v2 be
eigenvectors associated to eigenvalues λ1 and λ2, respectively. Then, we have that

λ1 ⟨v1, v2⟩ = ⟨λ1v1, v2⟩
= ⟨T (v1), v2⟩
= ⟨v1, T (v2)⟩
= ⟨v1, λ2v2⟩
= λ2 ⟨v1, v2⟩

(λ1 − λ2) ⟨v1, v2⟩ = 0

and so if the eigenvalues are distinct, we must have ⟨v1, v2⟩ = 0, as desired. Note that no complex conjuga-
tion is needed, since all eigenvalues are real.

The Spectral Theorem generalizes to the case when V is not finite-dimensional, and is an incredibly impor-
tant result in the field of functional analysis. However, the proofs get much more difficult in this case, so
we will not explore this further.

Example. One application of the Spectral Theorem is in multivariable calculus, when one defines the Hes-
sian matrix of second derivatives of a function f(x1, . . . , xn) as

H(f) =


∂2f

∂x1∂x1

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2∂x2

...
. . .

∂2f
∂xn∂x1

∂2f
∂xn∂xn


Clairaut’s Theorem tells us that mixed partial derivatives commute, which means that this matrix is sym-
metric! Thus, this matrix is diagonalizable, and (at any point) the eigenvectors correspond to the principal
axes of the surface which best approximates f near that point, and the eigenvalues represent the second
derivative of the curves in those directions.
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Example. For a vector space V , a quadratic form q : V → F is a (not necessarily linear!) map such that
there exists a symmetric bilinear form B with

q(v) = B(v, v) ∀ v ∈ V

Thus, we can write q(v) = vTMv for some matrix M , and since B is symmetric, M is diagonalizable. Thus,
we can separate q into separate components. If V = Rn, then for some choice of coordinates, we can write

q(x1, . . . , xn) =

n∑
i=1

λix
2
i

where the λi are the eigenvalues of M .

Example. In probability theory, if one has a set of random variables {x1, . . . , xn}, then we can define a
covariance matrix

M =


Var(x1) Covar(x1, x2) · · · Covar(x1, xn)

Covar(x2, x1) Var(x2)
...

. . .
Covar(xn, x1) Var(xn)


and since covariance is symmetric, this matrix is symmetric. Thus, we can find a change of coordinates in
which this matrix is diagonalizable, and thus making our new variables independent since their covariance
is 0.

Example. In physics, one frequently sees the equation

E =
1

2
Iω2

where E denotes energy, I denotes the moment of inertia, and ω denotes angular velocity. However, you
may have also seen that in the rotational setting, many of our quantities are vectors, such as angular posi-
tion or velocity, whose direction points in the axis of rotation (taken with right hand rule) and magnitude
represents the desired scalar quantity. This doesn’t quite make sense! How can I square the vector ω? It
turns out that the moment of inertia is actually properly interpreted as a matrix, and the equation should
really read

E =
1

2
ωT Iω

Note that physicists often call this the inertia tensor, since it is essentially the bilinear form associated to I
evaluated on (ω, ω). The moment of inertia matrix in three dimensions is often written

I =

´ y2 + z2 dm −
´
xy dm −

´
xz dm

−
´
xy dm

´
x2 + z2 dm −

´
yz dm

−
´
xz dm −

´
yz dm

´
x2 + y2 dm


where the diagonal entries are the standard moments of inertia about the usual coordinate axes, and the
off-diagonal terms are the products of inertia. One can think of the off-diagonal entries as mixing between
the coordinate axes, so an object spinning around one axis will also try to spin around the others. However,
since this matrix is symmetric, it is diagonalizable, and the eigenvectors which diagonalize it correspond to
the principal axes of rotation, and the eigenvalues correspond to the moments of inertia around these axes.
These axes are called principal, since the off-diagonal products of inertia are 0, so the object rotating around
these axes will not try to spin around the others.
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