MATH 340A: Homework 6

Due on Gradescope by August 11th at 11:59pm.
Problem 1. Let $V=\mathbb{R}[x]_{\leq 2}$ be the \mathbb{R}-vector space of polynomials with degree at most 2 , and fix a basis $\left\{1, x, x^{2}\right\}$ for V. Define a map $B: V \times V \rightarrow \mathbb{R}$ by

$$
B(f, g)=\int_{0}^{1} f(t) g(t) d t
$$

(a) Show that B is a bilinear form.
(b) Find the matrix associated to B.
(c) Is B nondegenerate?

Problem 2. Let M be an $n \times n$ symmetric matrix. Show that M is positive definite (i.e. $v^{T} M v>0$ for all $v \neq 0$) if and only if all eigenvalues of M are positive. You may (and should!) use the result of the Spectral Theorem.

Problem 3. Recall from class that for an inner product space V and subspace $W \subset V$, we can define the orthogonal complement of W to be

$$
W^{\perp}=\{v \in V \mid\langle v, w\rangle=0 \forall w \in W\}
$$

Prove the following statements about orthogonal complements.
(a) Show that W^{\perp} is a subspace of V.
(b) Show that $V=W \oplus W^{\perp}$.
(c) Show that $W^{\perp} \cong V / W$.
(d) Show that $\operatorname{dim}\left(W^{\perp}\right)=\operatorname{dim}(V)-\operatorname{dim}(W)$.

