MATH 340A: Homework 5

Due on Gradescope by July 28th at 11:59pm.
Problem 1. (a) Suppose F is algebraically closed, and V is a non-zero finite-dimensional F-vector space. Let $T: V \rightarrow V$ be a linear map. Show that T has an eigenvector.
(b) Give an example of an infinite-dimensional V and linear map $T: V \rightarrow V$ which does not have an eigenvector.
(c) Suppose V is a finite-dimensional F vector space, and $T: V \rightarrow V$ is an invertible linear map. Describe the eigenvectors and eigenvalues of T^{-1} in relation to those of T.

Problem 2. Let V be an F-vector space of dimension n (F is not necessarily algebraically closed), and let $T: V \rightarrow V$ be a linear map. Show that if the characteristic polynomial of T is given by

$$
p(\lambda)=\lambda^{n}+a_{n-1} \lambda^{n-1}+\cdots+a_{1} \lambda+a_{0}
$$

then $\operatorname{det}(T)= \pm a_{0}$ and $\operatorname{tr}(T)= \pm a_{n-1}$. Additionally, for each case, describe when the sign is + and when the sign is - .

Problem 3. Finish the proof of the Cayley-Hamilton Theorem from class, using the following argument.
(a) Show that if $p(t) \in F[t]$ is a polynomial, and M is a matrix with entries in F, then determining if $p(M)=0$ is independent of basis (i.e. if $M^{\prime}=P^{-1} M P$, then $p\left(M^{\prime}\right)=$ 0 if and only if $p(M)=0$).
(b) For a given matrix M with entries in F, think of M as a matrix with entries in \bar{F}, and change M to Jordan Normal Form. Conclude that $p(M)=0$, proving the theorem.

Problem 4. Let S denote the set of 4×4 matrices over \mathbb{C} whose eigenvalues are a subset of the set $\{a, b\}$ with $a \neq b$. Determine a full set of similarity representatives for S. In other words, provide a set of matrices S^{\prime} such that any matrix in S is similar to exactly one matrix in S^{\prime}.

Problem 5. Let V be a finite-dimensional F-vector space, and let F be algebraically closed. Let $T: V \rightarrow V$ be a linear map. Then, the minimal polynomial of T is the monic (i.e. leading coefficient is 1) polynomial $m(t) \in F[t]$ of lowest degree such that $m(T)=0$.
(a) Show that $m(t)$ is unique. In other words, if $m_{1}(t)$ and $m_{2}(t)$ are both minimal polynomials for T, then $m_{1}(t)=m_{2}(t)$.
(b) Show that if $q(t)$ is a polynomial such that $q(T)=0$, then $m(t)$ divides $q(t)$ (You may need to assume polynomial division/remainder theorem). Conclude that since the characteristic polynomial $p(t)$ satisfies $p(T)=0$ by Cayley-Hamilton, we must have that $m(t)$ divides $p(t)$, so the factors of $m(t)$ are precisely $\left(t-\lambda_{i}\right)$ raised to some power.
(c) Using Jordan Normal Form, show that if $\lambda_{1}, \ldots, \lambda_{k}$ are the eigenvalues of T, then the exponent of $\left(t-\lambda_{i}\right)$ in $m(t)$ is the size of the largest Jordan block associated to λ_{i}. Conclude that if the minimal polynomial has no repeated roots, then T is diagonalizable.
(d) Using the argument from problem 3, show that if F is not algebraically closed, the above results still hold.

