MATH 340A: Homework 4

Due on Gradescope by July 21st at 11:59pm.

Problem 1. Let V, W be finite-dimensional F-vector spaces, let $T : V \to W$ be a linear map, and fix bases for V and W. Prove that the matrix representation of the dual map $T^* : W^* \to V^*$ (in the dual bases for V and W) is the transpose of the matrix representation for T. (If this problem is too tedious, feel free to just prove the case where W = V).

Problem 2. Recall from class the definitions of $\text{Sym}^k(V)$ and $\text{Alt}^k(V)$ for a finite dimensional *F*-vector space *V*.

- (a) Prove that $\operatorname{Sym}^{k}(V)$ is a subspace of $\operatorname{Hom}_{F}(V^{k}; F)$ of dimension $\binom{n+k-1}{k}$.
- (b) Prove that $\operatorname{Alt}^{k}(V)$ is a subspace of $\operatorname{Hom}_{F}(V^{k}; F)$ of dimension $\binom{n}{k}$.

Problem 3. Let $GL_n(F)$ be the set of invertible $n \times n$ matrices with entries in F. Determine the number of elements in $GL_n(\mathbb{F}_p)$ (as a function of p and n).

Problem 4. Let $\alpha_1, \ldots, \alpha_n \in F$. Then, the Vandermonde matrix is given by

$$V(\alpha_1, \dots, \alpha_n) = \begin{pmatrix} 1 & \alpha_1 & \alpha_1^2 & \cdots & \alpha_1^{n-1} \\ 1 & \alpha_2 & \alpha_2^2 & \cdots & \alpha_2^{n-1} \\ 1 & \alpha_3 & \alpha_3^2 & \cdots & \alpha_3^{n-1} \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 1 & \alpha_n & \alpha_n^2 & \cdots & \alpha_n^{n-1} \end{pmatrix}$$

Prove that

$$\det(V(\alpha_1,\ldots,\alpha_n)) = \prod_{1 \le i < j \le n} (\alpha_i - \alpha_j)$$

using the following steps.

- (a) Let $V = F[x]_{\leq (n-1)}$ and let $W = F^n$. Choose bases $B_V = \{1, x, \dots, x^{n-1}\}$ and $B_W = \{e_1, \dots, e_n\}$. Find a linear map $T : V \to W$ whose matrix representation is $V(\alpha_1, \dots, \alpha_n)$. Describe the map without using bases, and prove that the map is indeed linear.
- (b) Show that the basis

$$B'_{V} = \left\{ \prod_{i=1}^{j} (x - \alpha_{i}) \middle| 0 \le j \le n - 1 \right\}$$

= {1, (x - \alpha_{1}), (x - \alpha_{1})(x - \alpha_{2}), \dots, (x - \alpha_{1}) \dots (x - \alpha_{n-1})}

is a basis for V.

(c) Find the matrix representation for T in the bases B'_V and B_W , and compute det(T) in this basis instead (Hint: it should be easy to compute det(T) in this basis, because the matrix representation has a special property!).

Problem 5. Recall that \mathbb{C} is an \mathbb{R} -vector space of dimension 2.

(a) Fix $\lambda \in \mathbb{C}$. Show that multiplication by λ , defined by the function

$$m_{\lambda}: \mathbb{C} \to \mathbb{C}$$
$$z \mapsto \lambda z$$

is an \mathbb{R} -linear transformation from \mathbb{C} to \mathbb{C} .

- (b) Suppose $\lambda = 1 + i$. Using the basis $\{1, i\}$ for \mathbb{C} , find the matrix representation M_{λ} of λ .
- (c) Suppose $\lambda = 1 + i$. Using the basis $\{1, 2 + i\}$ for \mathbb{C} , find the matrix representation for M_{λ} of λ .
- (d) Suppose $\lambda = 1 + i$. Determine $det(m_{\lambda})$.
- (e) Suppose $\lambda = 1 + i$. Find a polynomial p(z) such that $p(\lambda) = 0$. Compute $p(M_{\lambda})$ (that is, evaluate the polynomial p(z) where z is replaced by the matrix M_{λ}). Explain why this result should be expected (does not have to be rigorous).