MATH 340A: Homework 4

Due on Gradescope by July 21st at 11:59pm.
Problem 1. Let V, W be finite-dimensional F-vector spaces, let $T: V \rightarrow W$ be a linear map, and fix bases for V and W. Prove that the matrix representation of the dual map $T^{*}: W^{*} \rightarrow V^{*}$ (in the dual bases for V and W) is the transpose of the matrix representation for T. (If this problem is too tedious, feel free to just prove the case where $W=V$).

Problem 2. Recall from class the definitions of $\operatorname{Sym}^{k}(V)$ and $\operatorname{Alt}^{k}(V)$ for a finite dimensional F-vector space V.
(a) Prove that $\operatorname{Sym}^{k}(V)$ is a subspace of $\operatorname{Hom}_{F}\left(V^{k} ; F\right)$ of dimension $\binom{n+k-1}{k}$.
(b) Prove that $\operatorname{Alt}^{k}(V)$ is a subspace of $\operatorname{Hom}_{F}\left(V^{k} ; F\right)$ of dimension $\binom{n}{k}$.

Problem 3. Let $\mathrm{GL}_{n}(F)$ be the set of invertible $n \times n$ matrices with entries in F. Determine the number of elements in $\mathrm{GL}_{n}\left(\mathbb{F}_{p}\right)$ (as a function of p and n).

Problem 4. Let $\alpha_{1}, \ldots, \alpha_{n} \in F$. Then, the Vandermonde matrix is given by

$$
V\left(\alpha_{1}, \ldots, \alpha_{n}\right)=\left(\begin{array}{ccccc}
1 & \alpha_{1} & \alpha_{1}^{2} & \cdots & \alpha_{1}^{n-1} \\
1 & \alpha_{2} & \alpha_{2}^{2} & \cdots & \alpha_{2}^{n-1} \\
1 & \alpha_{3} & \alpha_{3}^{2} & \cdots & \alpha_{3}^{n-1} \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
1 & \alpha_{n} & \alpha_{n}^{2} & \cdots & \alpha_{n}^{n-1}
\end{array}\right)
$$

Prove that

$$
\operatorname{det}\left(V\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right)=\prod_{1 \leq i<j \leq n}\left(\alpha_{i}-\alpha_{j}\right)
$$

using the following steps.
(a) Let $V=F[x]_{\leq(n-1)}$ and let $W=F^{n}$. Choose bases $B_{V}=\left\{1, x, \ldots, x^{n-1}\right\}$ and $B_{W}=\left\{e_{1}, \ldots, e_{n}\right\}$. Find a linear map $T: V \rightarrow W$ whose matrix representation is $V\left(\alpha_{1}, \ldots, \alpha_{n}\right)$. Describe the map without using bases, and prove that the map is indeed linear.
(b) Show that the basis

$$
\begin{aligned}
B_{V}^{\prime} & =\left\{\prod_{i=1}^{j}\left(x-\alpha_{i}\right) \mid 0 \leq j \leq n-1\right\} \\
& =\left\{1,\left(x-\alpha_{1}\right),\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right), \ldots,\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{n-1}\right)\right\}
\end{aligned}
$$

is a basis for V.
(c) Find the matrix representation for T in the bases B_{V}^{\prime} and B_{W}, and compute $\operatorname{det}(T)$ in this basis instead (Hint: it should be easy to compute $\operatorname{det}(T)$ in this basis, because the matrix representation has a special property!).

Problem 5. Recall that \mathbb{C} is an \mathbb{R}-vector space of dimension 2.
(a) Fix $\lambda \in \mathbb{C}$. Show that multiplication by λ, defined by the function

$$
\begin{aligned}
m_{\lambda}: \mathbb{C} & \rightarrow \mathbb{C} \\
z & \mapsto \lambda z
\end{aligned}
$$

is an \mathbb{R}-linear transformation from \mathbb{C} to \mathbb{C}.
(b) Suppose $\lambda=1+i$. Using the basis $\{1, i\}$ for \mathbb{C}, find the matrix representation M_{λ} of λ.
(c) Suppose $\lambda=1+i$. Using the basis $\{1,2+i\}$ for \mathbb{C}, find the matrix representation for M_{λ} of λ.
(d) Suppose $\lambda=1+i$. Determine $\operatorname{det}\left(m_{\lambda}\right)$.
(e) Suppose $\lambda=1+i$. Find a polynomial $p(z)$ such that $p(\lambda)=0$. Compute $p\left(M_{\lambda}\right)$ (that is, evaluate the polynomial $p(z)$ where z is replaced by the matrix M_{λ}). Explain why this result should be expected (does not have to be rigorous).

