MATH 340A: Homework 3

Due on Gradescope by July 14th at 11:59pm.

Problem 1. Let V, W be finite-dimensional F-vector spaces, and let $T : V \to W$ be an invertible linear map. Show that $T^{-1} : W \to V$ is also a linear map.

Problem 2. Let *V*, *W* be finite-dimensional *F*-vector spaces, and let $T : V \rightarrow W$ be a linear map.

- (a) Show that T is injective if and only if it takes linearly independent sets of V to linearly independent sets of W.
- (b) Show that *T* is surjective if and only if it takes spanning sets of *V* to spanning sets of *W*.
- (c) Show that the composition of two injective, surjective, or bijective maps is injective, surjective, or bijective, respectively.
- (d) Let $T = T_1 \circ T_2$ be the composition of linear maps T_1 and T_2 . If T is bijective, can you say anything about T_1 or T_2 ? Specifically, does T_1 or T_2 have to be injective, surjective, or bijective?

Problem 3. Let *V*, *W* be finite-dimensional *F*-vector spaces, and let $T : V \to W$ be a linear map.

- (a) Prove that if $T: V \to W$ is injective, then $\dim(V) \le \dim(W)$. Similarly, prove that if $T: V \to W$ is surjective, then $\dim(V) \ge \dim(W)$.
- (b) Prove that if $\dim(V) = \dim(W)$, then the following are equivalent:
 - *T* is injective.
 - *T* is surjective.
 - *T* is invertible.
- (c) Suppose $V' \subset V$ is a subspace, and $\dim(V') = \dim(V)$. Show that V' = V.

Problem 4. Let *V* be a finite-dimensional *F*-vector space, and let $T : V \to V$ be a linear map. Suppose $T^2 = T$.

- (a) Show that $V = \ker(T) \oplus \operatorname{im}(T)$.
- (b) Show that the reverse implication is not true. In other words, give an example of a linear map $T: V \to V$ with $V = \ker(T) \oplus \operatorname{im}(T)$ but $T^2 \neq T$.

Problem 5. Let *U*, *V*, and *W* be finite-dimensional *F*-vector spaces. We say that a **short exact sequence** of vector spaces is given by

$$\{0\} \longrightarrow U \xrightarrow{S} V \xrightarrow{T} W \longrightarrow \{0\}$$

where $S : U \to V$ and $T : V \to W$ are linear maps, S is injective, T is surjective, and furthermore im(S) = ker(T) as subspaces of V. Prove the following statements about short exact sequences.

- (a) If $U = \{0\}$ or $W = \{0\}$, then $U \cong V$ or $V \cong W$, respectively.
- (b) Prove that $\dim(V) = \dim(U) + \dim(W)$.
- (c) Let *V* be a finite-dimensional *F*-vector space, and let $W \subset V$ be a subspace. Show that

 $\{0\} \longrightarrow W \stackrel{i}{\longrightarrow} V \stackrel{\pi}{\longrightarrow} V/W \longrightarrow \{0\}$

is a short exact sequence, where *i* represents the inclusion of *W* into *V*, and $\pi : V \to V/W$ is the linear map which sends $v \in V$ to $[v] \in V/W$.

(d) Show that in a short exact sequence of finite-dimensional vector spaces, we have that $V \cong U \oplus W$. Do not use a dimension-counting argument!