MATH 340A: Homework 1

Due on Gradescope by June 30 at 11:59pm.

Problem 1. Prove the following facts about fields. Let F be a field.
(a) Show that the additive and multiplicative identity of F are both unique.
(b) Show that the additive and multiplicative inverses in F are both unique.
(c) Show that for $a, b \in F$, if $a b=0$, then either $a=0$ or $b=0$.
(d) Define the set

$$
\mathbb{Q}(\sqrt{2})=\{a+b \sqrt{2} \mid a, b \in \mathbb{Q}\} .
$$

Show that $\mathbb{Q}(\sqrt{2})$ is a field.
Problem 2. Prove the following facts about finite fields. Let F be a finite field.
(a) Let \mathbb{F}_{n} be the integers modulo n, as constructed in class. Show that if \mathbb{F}_{n} is a field, then n must be prime.
(b) Show that $\operatorname{char}(F)>0$.
(c) Show that F cannot be algebraically closed. Conclude that if K is an algebraically closed field, K must have infinitely many elements.
(d) Construct an addition and multiplication table for a field with 4 elements, or prove that one cannot exist. If one exists, what is its characteristic?

Problem 3. For each of the following, either verify that it is a vector space (over the given field), or prove that it is not.
(a) \mathbb{R}^{2}, with the usual addition operation, but $c(x, y)=(c x, 0)$ for $c \in \mathbb{R}$ (over the field $\mathbb{R})$.
(b) The set of differentiable functions $f: \mathbb{R} \rightarrow \mathbb{R}$, with $f^{\prime}(0)=f^{\prime}(1)=1$, under usual addition and multiplication (over \mathbb{R}).
(c) \mathbb{F}_{2}^{2} under the usual multplication, but addition is replaced by

$$
\binom{a}{b}+\binom{c}{d}=\binom{a-b}{c-d}
$$

(over \mathbb{F}_{2}).
Problem 4. Let V be a vector space over the field F.
(a) Prove that for $c \in F$ with $c \neq 0$, and $v, w \in V$, if $c v=c w$, then $v=w$.
(b) Prove that for $a, b \in F$ and $v \in V(v \neq 0)$, if $a v=b v$, then $a=b$.
(c) Prove that for $a \in F, a 0=0$ (where 0 denotes $0 \in V$).
(d) Prove that for $c \in F$ and $v \in V$, if $c v=0$, then either $c=0 \in F$ or $v=0 \in V$.

Problem 5. Give an example of a nonempty subset $S \subset \mathbb{R}^{n}$ which is not a vector space, but is...
(a) ...closed under vector addition.
(b) ...closed under scalar multiplication (by \mathbb{R}).
(c) ...closed under taking additive inverses.

