MATH 340A: Homework 1

Due on Gradescope by **June 30** at 11:59pm.

Problem 1. Prove the following facts about fields. Let *F* be a field.

- (a) Show that the additive and multiplicative identity of *F* are both unique.
- (b) Show that the additive and multiplicative inverses in *F* are both unique.
- (c) Show that for $a, b \in F$, if ab = 0, then either a = 0 or b = 0.
- (d) Define the set

$$\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}.$$

Show that $\mathbb{Q}(\sqrt{2})$ is a field.

Problem 2. Prove the following facts about finite fields. Let *F* be a finite field.

- (a) Let \mathbb{F}_n be the integers modulo n, as constructed in class. Show that if \mathbb{F}_n is a field, then n must be prime.
- (b) Show that char(F) > 0.
- (c) Show that *F* cannot be algebraically closed. Conclude that if *K* is an algebraically closed field, *K* must have infinitely many elements.
- (d) Construct an addition and multiplication table for a field with 4 elements, or prove that one cannot exist. If one exists, what is its characteristic?

Problem 3. For each of the following, either verify that it is a vector space (over the given field), or prove that it is not.

- (a) \mathbb{R}^2 , with the usual addition operation, but c(x, y) = (cx, 0) for $c \in \mathbb{R}$ (over the field \mathbb{R}).
- (b) The set of differentiable functions $f : \mathbb{R} \to \mathbb{R}$, with f'(0) = f'(1) = 1, under usual addition and multiplication (over \mathbb{R}).
- (c) \mathbb{F}_2^2 under the usual multiplication, but addition is replaced by

$$\binom{a}{b} + \binom{c}{d} = \binom{a-b}{c-d}$$

(over \mathbb{F}_2).

Problem 4. Let *V* be a vector space over the field *F*.

- (a) Prove that for $c \in F$ with $c \neq 0$, and $v, w \in V$, if cv = cw, then v = w.
- (b) Prove that for $a, b \in F$ and $v \in V$ ($v \neq 0$), if av = bv, then a = b.

- (c) Prove that for $a \in F$, a0 = 0 (where 0 denotes $0 \in V$).
- (d) Prove that for $c \in F$ and $v \in V$, if cv = 0, then either $c = 0 \in F$ or $v = 0 \in V$.

Problem 5. Give an example of a nonempty subset $S \subset \mathbb{R}^n$ which is **not** a vector space, but is...

- (a) ... closed under vector addition.
- (b) ... closed under scalar multiplication (by \mathbb{R}).
- (c) ... closed under taking additive inverses.