

This will be a journey two algebraic topology, using linear algebra as a vital tool in making calculations. Algebraic Topology tries to dusiner questions in topology (geometric questions) by making the questions more algebraic. One of the main questions we ask: Q' How many holes does my space haves . We are going to give a way to answer this question and investigate some machinery of algebraic topology using vector spaces and linear algebra.

Topo ogy This is the study of abstract spaces up to continuous determation (No algebraic structure + we can wiggle and smuch them around) Spaces of interest . The circle · The torus $T^2 = (J)$ 5':= 2 to a topologist, . The Klein bottle this is the same as a coffee mug. Colfee • The sphere 52 :=

o The disk	o The Ball
P'	
• The mobius	
	·graphs
The point h	ere is that I could go on and
on; while	a vector space, which has
a very stric	t definition, topological spaces
cen look	very crazy!
Q'How can	we classify topological
spaces?	
One answer:	Introduce gome linear algebra! (to capture the topology)

IF we fix a field F, then one way to distinguish between vector spaces is by their dimension. If dimV = dimW, then V=W Let's try to systematically associate some vector spaces to a space X so that we can use them as invariants! This will give us a way to distinguish spaces But first Combinatorics? Let's try to build our spaces in a "blue print" way, out of vertices, line segments, triangles and their higher generalizations we can de this (turns out, for most nice spaces!)

l vertex 1 edge s' = O = x $S^2 =$ vertex face D'~ face D²~ A l tetrahedron (face + another dimension) We see that we can "glue" these things rogether. What if we take this further?

with "a square". What happens If we glue some Let's 9/w+ RA of the sides together? 2 vertices a a a a a cylinder! 4 edges Verlex Sedys torus! () Klein Boffle! Ivertex Zedgs

2 vertices El edges 2 22 Mobius! 1 ~ 7.7 we call this $\mathbb{R}P^2$ Innex Zedas Notice that when we glue, ue identify edges & vortices. In fact, this is what we need to create our invariant! These are called cell complexes; the data of their cells (vertices, edges faces) and how they're attached is all we reel: Cellular Homology The idea! quantify "holes" in my space.

Let X be a cell complex. Suppose: • X has O-cells {V,, V. 3 (rentices)
• X has O-cells 2V,, V.3 (vertices)
• X has I - cells {e, e, 3 (edges)
• X has 2-cells {f, , fx3 (faces)
Define for each $n \ge 0$ the vector space $C_n(X)$, the n-chains of X, as the R-vector space with one basis element for each n-cell. \overbrace{X}
Exi Let $X = T^2 = \int_{a}^{b} A_{c,T} + a$ $b = \int_{a}^{b} A_{c,T} + b$ $b = \int_{a}^{b} A_{c,T} + b$

For each nzo there is a linear transburtin Cutx) dr, Cuu(x) (specify on a basis!) $\partial_{n}(\sigma) = \sum_{i} G_{i} \sigma \int_{\hat{v}}$ (what this means is we take an n-cell or and look at all the (n-1) - cells inside and take their alternating Snun. So, we have a sequence of linear maps: -> Cuti(X) duty Cu(X) du Cut(X) -> ... $-> C(x) \xrightarrow{\partial_1} C_0(x) \rightarrow O$ Fact: In July is a subspace of kurdn

duti duti Cu(X) Cure (x) Cu-e(x) So, we can always form the quotient vector space!] kerdn im dut, H, (x) ~ with homology Xto Fact IF X = 1 as topological spaces, then Hu(X) = Hu(Y) Huzo ATO tell spaces apart, computer homology!

Ex
Back to the torus:
$-30 - C_2(T^2) \xrightarrow{J_2} C_1(T^2)$
$\frac{\partial}{\partial C_{0}(T^{2})} \rightarrow 0$
$\frac{\partial}{\partial c} = C_{2}(T^{2}) \longrightarrow O$
Immediately, we know that for n 2,3
$H_{n}(T^{2})=0.$
$H_2(T^2)$
This is kerd2/imd3 = Kerd2
Since im $(\partial_3: 0 \longrightarrow C_2(T^2)) = 0$
$C_2(T^2) = \mathbb{R}^2$, $C_1(T^2) = \mathbb{R}^3$
so we can realize this as a matrix (ab cd)!
Just need to know the value on the
basi's.
$\partial_2(A) = a + b - c = \partial_2(B)$

$mo\left(\begin{array}{c} & \\ & \\ - & - \end{array}\right) \text{vank} = (, so nullity = ($
we kerd $_2 \cong \mathbb{R} \cong H_2(\mathbb{T}^2)$
$\frac{H_{i}(T_{2})}{This is kurd, lind_{2} = kurd_{i}/(a+b-c)}$
Whent is $kur \partial_{1} ?$ Find the mentrix. $\partial_{1} (a) = 0$, $\partial_{1} (b) = 0$, $\partial_{2} (c) = 0$, v' v' v'' v'' v'' v'' v'' v'' v'' v'' v
mos Kord, = IR3 (evenything!)
Thus, $H_1(T^2) \cong \mathbb{R}^2$
$\frac{H_o(T^2)}{K_w \partial_o/(m\partial_1 = IR/o = IR} \cdot Cool!$

Let's look at some other spaces. If they have any different homology, then they are not the same space! Ex: $C_{o}(s') \cong \mathbb{R}_{v}^{v} C_{o}(s') \cong \mathbb{R}_{v}^{v}$ =51 Hn(5')=0 + n7,2 -> 0 -> R{e3 -> R{v3 -> 0 H(s')= Kurd, lindz = Kurd we kerd, - R $\mathcal{O}_{\mathcal{O}}(\mathcal{O}) = \mathcal{O}_{\mathcal{O}} = \mathcal{O}_{\mathcal{O}}$ 50 H, (5') = R Ho(5') = ker Jolind, = TREV3/0 = TR

S' ¥ T2! These are "different" So to the eyes of topology. Ex: $C_0(5^2) = \mathbb{R}_{2^{\vee}}^2$ $C_{1}(5^{2})=0$ $C_2(S^2) = \mathbb{R}\{f\}$ -> REF3 -> O -> REv3 -> O $H_{n}(5^{2}) = 3R$ n=0,2 else Different again! Exi $\bigcirc C_2(D^2) = \mathbb{R}_{1}^{2} \mathbb{F}_{3}^{2}$ -10 -7R2F3-220-7 $H_n(Q^2) = \begin{cases} R & w=2 \\ O & else \end{cases}$

Ex. The Third X=cylinder	$C_{0}(x) = C_{1}(x) = C_{2}(x) = C_{2}(x)$	Rža,b,	c, d 3
	n 7, 3 2(x) 22 (((×1 = Co	んしょう
$k_{r}\partial_{2}$ $\partial_{2}(f,) = b - d + a$, ∂ ₂ ¢f	2)=0-	·d+c
both of these are	2 linearly	ind i	n G(X)
Krd1/imd2	. .		· · · · · · · · ·
indz = IR2b-dta	a-dtc3 3	⁽ R ²	

$\partial_1(\alpha) = W - V$, $\partial_1(b) = 0$, $\partial_1(c) = 0$ $\partial_1(d) = W - V$					
$mp \operatorname{im} \partial_{2} = \operatorname{R} 2 \operatorname{W} - \sqrt{3} \cong \operatorname{R}$ $mp \operatorname{Kar} \partial_{2} \cong \operatorname{R}^{3} (\operatorname{Rank} - \operatorname{Nallity})$ $Mp \operatorname{H}_{1}(X) \cong \operatorname{R}^{3}/\operatorname{R}^{2} = \operatorname{R}$					
$H_{0}(X)$ $R^{2}/R=R$		me as circle!			
In fact,	5'≃ X	(homorpy ey.)			
· · · · · · · · · · · · · · · · · · ·		· ·			