Course notes for Real Analysis

Instructor: Tatiana Toro
Scribe: Avi Levy

June 6, 2014

These are my notes for Math 526, taught by Tatiana Toro at the UW in Spring 2014. They are updated online at:

http://www.math.washington.edu/~avius

Contents

March 31 1-1
April 2 2-1
April 4 3-1
April 7 4-1
April 9 5-1
April 11 6-1
April 14 7-1
April 16 8-1
April 18 9-1
April 21 10-1
April 23 11-1
April 25 12-1
<table>
<thead>
<tr>
<th>Date</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>April 28</td>
<td>13-1</td>
</tr>
<tr>
<td>April 30</td>
<td>14-1</td>
</tr>
<tr>
<td>May 2</td>
<td>15-1</td>
</tr>
<tr>
<td>May 5</td>
<td>16-1</td>
</tr>
<tr>
<td>May 7</td>
<td>17-1</td>
</tr>
<tr>
<td>May 9</td>
<td>18-1</td>
</tr>
<tr>
<td>May 12</td>
<td>19-1</td>
</tr>
<tr>
<td>May 14</td>
<td>20-1</td>
</tr>
<tr>
<td>May 16</td>
<td>21-1</td>
</tr>
<tr>
<td>May 19</td>
<td>22-1</td>
</tr>
<tr>
<td>May 21</td>
<td>23-1</td>
</tr>
<tr>
<td>May 23</td>
<td>24-1</td>
</tr>
<tr>
<td>May 28</td>
<td>25-1</td>
</tr>
<tr>
<td>May 30</td>
<td>26-1</td>
</tr>
<tr>
<td>June 2</td>
<td>27-1</td>
</tr>
<tr>
<td>June 4</td>
<td>28-1</td>
</tr>
<tr>
<td>June 6</td>
<td>29-1</td>
</tr>
</tbody>
</table>
Banach Spaces

Definition 1.1. A Banach space is a complete normed vector space.

1. $L^p(\mu) (X, M, \mu)$ complete σ-finite measure space, for $p \in [1, \infty]$. Recall membership in L^p spaces; proof of completeness using absolute continuity.

2. X a topological space, $B(X)$ and $BC(X)$ are both Banach space in the uniform norm:
 \[\|f\|_u = \sup_{x \in X} |f(x)| \]

3. N_f. Hölder continuous functions, $0 < \alpha \leq 1$.

 \[\Lambda^\alpha(\mathbb{R}^d) = \{ f: \mathbb{R}^d \to \mathbb{R} : \|f\|_\alpha < \infty \} \]

 and

 \[\|f\|_\alpha = \sup_{x \in \mathbb{R}^d} |f(x)| + \sup_{x \neq y \in \mathbb{R}^d} \frac{|f(x) - f(y)|}{|x - y|^\alpha} \]

 you use Arzela-Ascoli to get candidate function, use Cauchy to get stuff to work.

4. Building normed vector spaces from existing ones:

 \[(X, \|\cdot\|_X), (Y, \|\cdot\|_Y) \mapsto (X \times Y, \|\cdot\|) \]

 where

 \[\|(x, y)\| = \begin{cases} \max\{\|x\|_X, \|y\|_Y\} & \text{if } x, y \in X, \text{ or } y, x \in Y \\ \|x\|_X + \|y\|_Y & \text{if } x, y \notin X, Y \end{cases} \]

 They are all equivalent (it is an easy exercise to see that they all bound one another).

5. Quotient Spaces:

 X vector space, M linear subspace. For any $x, y \in X$, say $x \sim y$ if and only if $x - y \in M$. Look at a norm X/M which is the set of equivalence classes and is a vector space, under the operations $(x + M) + (y + M) = (x + y) + M$, and $\lambda(x + M) = \lambda x + M$.

 If X has a norm $\|\cdot\|$ and M is closed, then X/M inherits the norm $\|x + M\| = \inf_{y \in M} \|x + y\|$ called the quotient norm. When $X = H$ is a Hilbert space, then there is a particularly nice characterization in terms of distance from x to y_x, which is the closest point to x along the subspace M.

Definition. X, Y normed vector spaces.
1. A linear map $T : X \to Y$ is bounded if there is an $M > 0$ for which $\|Tx\| \leq M\|x\|$.

2. A linear map is continuous if for all $\epsilon > 0$, there is a $\delta > 0$ such that for $f, g \in X$ with $\|f - g\| < \delta$, we have $\|Tf - Tg\| < \epsilon$.

Comment: It looks like uniform, and something else looks like Lipschitz. But we have the following proposition:

Let $T : X \to Y$ be a linear map. The following are equivalent:

1. T is continuous
2. T is continuous at 0
3. T is bounded

Claim 1.2. T is linear, T is bounded, and $\|T - T_n\| \to 0$.

Proof. Since $\{T_n\}$ is Cauchy, it is bounded. Let $M = \sup_n \|T_n\| < \infty$. Then

$$\|Tx\| = \lim_{n \to \infty} \|T_nx\| \leq \limsup_{n \to \infty} \|T_n\| \|x\| \leq M\|x\|.$$

So we get $\{T_n\}$ bounded.

Recall

$$\|T - T_n\| = \sup \{\|(T - T_n)(x)\| : \|x\| = 1\};$$

for each n, then for all $m \in \mathbb{N}$ there is an x_m^n such that $\|x_m^n\| = 1$ and

$$\|T - T_n\| \leq \|Tm^n - T_nx_m^n\| + \frac{1}{2^m}.$$

Also $\lim_{j \to \infty} T_jx_m^n = Tm^n$. Then there is a $j_0 \geq n$ such that for all $j \geq j_0$, we have $\|Tjx_m^n - Tx_m^n\| < 2^{-m}$. Then

$$\|T - T_n\| \leq \|Tm^n - Tn^n\| + 2^{-m} \leq \|Tm^n - Tjx_m^n\| + \|Tjx_m^n - Tn^n\| + 2^{-m} \leq 2^{m-1} + \|Tn^n - Tj^n\| \leq 2^{m-1} + \|T - T_j\|.$$

Then for $j \geq j_0 \geq n$, there is an $N \in \mathbb{N}$ with $j \geq n \geq N$. Since $\{T_j\}$ Cauchy, $\|T_n - T_j\| < 2^{m-1}$ and we get $\|T - T_n\| < 2^{m-2}$.

\square
Dual of L^p

In today’s lecture, (X, M, μ) is a complete σ-finite measure space (not absolutely necessary for all cases). Suppose $p \in [1, \infty]$ and $\frac{1}{p} + \frac{1}{q} = 1$. Try to identify the dual of $L^p(\mu)$; start with an example.

Given $g \in L^q(\mu)$, define

$$Tf = \int fg \, d\mu$$

linear functions

By Hölder, $|Tf| \leq \|g\|_q \|f\|_p$; thus by definition of the operator norm, $\|T\| \leq \|q\|_q$. The goal of today’s glass it to prove that for $p < \infty$, there is nobody else; these are all the functionals.

Theorem 2.1. Suppose $p \in [1, \infty)$, and p, q are dual. Then $(L^p(\mu))^* = L^q(\mu)$ (* means space of bounded linear functionals).

This is in the following sense: if $\ell \in (L^p(\mu))^*$, then there is a unique $g \in L^q(\mu)$ such that $\ell(f) = \int fg \, d\mu$ and $\|\ell\| = \|g\|_q$ for all $f \in L^p(\mu)$. Also note that the theorem is not true when $p = \infty$; later on we’ll see what the dual is.

Lemma 2.2. S

1. If $g \in L^q(\mu)$, then

$$\|g\|_q = \sup_{f \in L^p, \|f\|_q \leq 1} \left|\int fg \, d\mu\right|.$$

(this computation is useful in PDE)

2. Suppose that g is measurable and integrable on sets of finite measure and

$$M = \sup \left\{ \int fg \, d\mu : f \in L^p(\mu), f \text{ is simple}, \|f\|_p \leq 1 \right\} < \infty$$

Then $g \in L^q(\mu)$ and $\|g\|_q = M$.

Proof. Radon-Nikodym states that if μ is σ-finite, ν is a signed σ-finite measure, and if $|\nu| \ll \mu$ then $\exists! g$ μ-measurable such that $d\nu = gd\mu$.

The first step if $\mu < \infty$; then we’ll do σ-finite. So assume μ is finite. Then if $E \in M$, we have $\mu(E) < \infty$ hence $\chi_E \in L^p(\mu)$. Then define $\nu(E) = \ell(\chi_E)$; want to show it is a measure.
First $\nu(\emptyset) = 0$. Now let $\{E_i\}_{i \in \mathbb{N}} \subset \mathcal{M}$ such that $E_i \cap E_j = \emptyset$. Let

$$E = \cup E_i = \cup_{i=1}^{n} E_i \cup E_{n}^*, \quad E_{n}^* = \cup_{i=1}^{\infty} E_i.$$

Then $\cap E_{n}^* = \emptyset$ and $\mu(E_{n}^*) < \infty$. Thus $\lim_{n \to \infty} \mu(E_{n}^*) = 0$. Since ℓ is linear, we have

$$\ell(\chi_E) = \ell(\chi_{\cup E_i}) + \ell(\chi_{E_{n}^*})$$

$$= \sum_{i=1}^{n} \ell(\chi_{E_i}) + \ell(\chi_{E_{n}^*})$$

$$= \sum_{i=1}^{n} \nu(E_i) + \nu(E_{n}^*).$$

We want to use a continuity of measure type of argument. We need to prove that $\nu(E_{n}^*) \to 0$. Observe

$$|\nu(E)| = |\ell(\chi_E)| \leq \|\ell\|_{X_E} \leq \|\ell\|_{\mu} = \|\ell\|((\mu E)^{1/p}),$$

so that $|\nu(E_{n}^*)| \leq \|\ell\|((\mu E_{n}^*)^{1/p})$ (the first sign that $p < \infty$ matters).

Thus we have proven that $\nu(E) = \ell(\chi_E)$ is a signed measure, $\nu < \infty$, and (by Hölder again) $|\nu| \ll \mu$. So by Radon-Nikodym, there is a unique measurable g such that $dv = g \, d\mu$ and $g \in L^1(\mu)$. Moreover $\ell(\chi_E) = \nu(E) = \int_E g \, d\mu$. If f is simple (defined a little different than first quarter but it’s fine), then by linearity $\ell(f) = \int f g \, d\mu$. Therefore $|\ell(f)| \leq \|\ell\| \|f\|_{p}$.

$$\sup_{\|f\|_{p} \leq 1, f \text{ simple}} |\ell(f)| = \sup \left| \int f g \, d\mu \right| \leq \|\ell\| < \infty.$$

Thus by (2) of Lemma (as yet unproven), $g \in L^q(\mu)$ and $\|g\|_q \leq \|\ell\|$. Hence if μ is finite and we assume our Lemma, we are done for simple functions. By density of simple functions, we are actually done.

Now suppose μ is σ-finite, so $X = \cup_{i \in \mathbb{N}} X_i$ where $\mu(X_i) < \infty$. Arrange for $X_n \subset X_{n+1}$; consider $\mu \perp X_n$ (the restriction - definition is first line of manipulation). Then

$$L^p(X_n, \mu) = \{f \in L^p(\mu): f = 0 \text{ on } X_n^c\},$$

and since $\mu \perp X_n(A) = \mu(A \cap X_n) \leq \mu X_n < \infty$, there is a $g_n \in L^q(\mu \perp X_n)$ such that for $f \in L^p(\mu \perp X_n)$ we have $\ell(f) = \int g_n f \, d\mu$.

Claim 2.3. *If $n < m$, then $g_n = g_m \mu$-everywhere on X_n.***

Proof. If $f \in L^p(\mu \perp X_n)$ then $f \in L^p(\mu \perp X_m)$. Observe that $\int f g_n \, d\mu = \int f g_m \, d\mu$. Hence $g_m|_{X_n} = g_n$ a.e., by uniqueness in Radon-Nikodym.

Let $g = g_n$ if $x \in X_n$. Now $g_n \in L^q(\mu \perp X_n)$, by MCT; since $0 \leq |g_n| \leq \cdots \leq |g|$. Now $|g_n| \to |g|$ μ-a.e. by MCT. Thus

$$\|g\|_q = \lim_{n \to \infty} \|g_n\|_q \leq \|\ell\|.$$
To show that last line, we need to assume $q < \infty$ (so that we can take q-powers of both sides). If $q = \infty$, we have

$$\|g\|_\infty = \sup_n \|g_n\|_{L^\infty(X_n)} \leq \ell.$$

Now if $f \in L^p(\mu)$ then $f\chi_{X_n} \to f \mu$-a.e., and by LDCT we get $|f\chi_{X_n} - f| \to 0$ in $L^p(\mu)$ (use a $(2f)^p$ argument). Again using MCT, we get

$$\int fg \, d\mu = \lim_{n \to \infty} \int_{X_n} fg_n \, d\mu = \lim_{n \to \infty} \ell(f\chi_{X_n}) = \ell(f)$$
Theorem 3.1. $p \in [1, \infty)$, $(L^p(\mu))^* = L^q(\mu)$.

Lemma 3.2. $1 \leq p, q \leq \infty$ and p, q dual; everything is over the reals, not complex (but it is still true) (X, \mathcal{M}, μ) a σ-finite complete measure space.

1. If $g \in L^q(\mu)$ then $\|g\|_q = \sup \{ \int fg \, d\mu \} = \Lambda$ (taken over $\|f\|_p \leq 1$).

2. If g is measurable and integrable on sets of finite measure and $M = \sup \int fg \, d\mu$ (supremum taken over f simple and $\|f\|_p \leq 1$) satisfies $M < \infty$, then $g \in L^q(\mu)$ and $M = \|g\|_q$.

Proof. Proof of 1: If $g = 0$ we’re done; so assume $g \neq 0$, i.e. there is a set of positive measure where g is non-zero; $\|g\|_q \neq 0$. By H"older, $\Lambda \leq \|g\|_q$. So we need to choose f to be the equality case.

Case 1: $q = 1$. Let $f(x) = \text{sgn} \, g(x)$, which is measurable (prove it). Then $\|f\|_\infty = 1$. Hence

$$\int fg \, d\mu = \int \text{sgn} \, g(x) \cdot g(x) \, d\mu = \int |g| \, d\mu = \|g\|_1 \leq \Lambda$$

and we’re done.

Case 2: $1 < p, q < \infty$. Choose

$$f(x) = |g(x)|^{q-1} \frac{\text{sgn} \, g(x)}{\|g\|_q^{q-1}}$$

Then $|f|^p = |g|^q/\|g\|_q^q$ so $\|f\|_p = 1$. Also

$$\int fg \, d\mu = \int \frac{|g|^{q-1} \text{sgn} \, g \cdot g \, d\mu}{\|g\|_q^{q-1}} = \frac{\|g\|_q}{\|g\|_q^{q-1}} = \|g\|_q$$

and we’re done. Notice that up until now, we haven’t used σ-finite; it will come up in the last case.
Case 3: If \(q = \infty \), let \(\epsilon > 0 \) and \(E \) a set with \(\mu(E) \in (0, \infty) \) such that \(|g| > \|g\|_\infty - \epsilon \) on \(E \). We use \(\sigma \)-finiteness to ensure that \(E \) can be chosen to have finite measure. Take \(f = \chi_E \text{sgn } g/\mu E \), show that \(f \in L^1(\mu) \) and \(\|f\|_1 = 1 \). Then

\[
\int fg \, d\mu = \int_E \frac{|g|}{\mu E} \, d\mu \geq \|g\|_\infty - \epsilon.
\]

Now \(\Lambda = \sup_{\|f\|_1 \leq 1} \int fg \, d\mu \geq \|g\|_\infty - \epsilon \), so letting \(\epsilon \to 0 \) we obtain \(\Lambda \geq \|g\|_\infty \).

Proof of 2: Since \(g \) is measurable, there are simple functions \(g_n \) such that \(|g_n| \nearrow |g| \) and \(g_n \to g \) almost everywhere. By \(\sigma \)-finiteness, we can write \(X_n \nearrow X \) with \(\mu X_n < \infty \). Choose \(g_n = g_n \chi_{X_n} \), so \(g_n \in L^q \).

Let’s assume \(1 < p, q < \infty \). Construct \(f_n = \frac{|g_n|^{q-1} \text{sgn } g}{\|g_n\|_q^q} \); then \(f_n \in L^p \). Then

\[
M \geq \int f_n g \, d\mu \\
= \int \frac{|g_n|^{q-1}}{\|g_n\|_q^q} \\
\geq \frac{\|g_n\|_q^{q-1}}{\|g_n\|_q^q} \\
= \|g_n\|_q.
\]

Now by MCT, \(\|g\|_q = \lim_{n \to \infty} \|g_n\|_q \leq M \) and we’re done.

If \(p = 1 \), let \(A_\epsilon = \{x: |g(x)| > M + \epsilon\} \). Now show that \(\mu A_\epsilon = 0 \) for all \(\epsilon > 0 \), whereupon \(\|g\|_\infty \leq M \). Finish the proof (it goes by contradiction). If it was not the case, then \(\mu A_\epsilon > 0 \), so take \(B \subset A_\epsilon \) with \(\mu(B) \in (0, \infty) \). Follow the same proof and something happens yielding a contradiction.

If \(p = \infty \), then \(f_n = \text{sgn } g(x) \chi_{X_n} \). Just integrate it again \(g \) and see what happens. \(\square \)
Math 526 Real Analysis Notes by Avi Levy

Lecture 4: April 7

Definition 4.1. Let X be a real vector space. A sublinear functional $p : X \rightarrow \mathbb{R}$ is a map that satisfies:

1. $p(x + y) \leq p(x) + p(y)$
2. $p(\lambda x) = \lambda p(x)$ for $\lambda \geq 0$

Take $p = \| . \|$ for a normed vector space.

Theorem 4.2 (Hahn-Banach). Let X be a real vector space, p a sublinear functional, let M be a linear subspace of X, let $f : M \rightarrow \mathbb{R}$ be a linear functional such that $f(z) \leq p(z)$ for $z \in M$. Then there exists a linear functional $F : X \rightarrow \mathbb{R}$ such that $F|_M = f$ and $F(z) \leq p(z)$ for $z \in X$.

As an application, we show that $(L^\infty(\mu))^* \not\supseteq L^1(\mu)$.

Take $X = [0, 1]$, $\mu = L^1$, $C(X) \subseteq L^\infty(\mu)$. Then $T : C(X) \rightarrow \mathbb{R}$; $f \mapsto f(0)$ satisfies $|f(0)| = |Tf| \leq \|f\|_\infty$ (bounded by sublinear functional). Then by Hahn Banach, we can extend to $F : L^\infty(\mu) \rightarrow \mathbb{R}$ (so that $F|_{C(X)} = T$). Note that $\|F(g)\| \leq \|g\|_\infty$.

As F is $L^\infty(\mu)^*$, let $f_n = (1 - nx)_{[0,1/n]}$. Then $F(f_n) = 1$. If F was integration against $g \in L^1$, there would be a problem. Indeed, $f_n g \rightarrow 0$ almost everywhere. Also $|f_n g| \leq |g|$, so by dominated convergence $\int f_n g \, dx \rightarrow 0$. So we’ve constructed an element of $L^\infty(\mu)^*$ that does not correspond to anything in L^1.

Hahn-Banach.

Lemma 4.3 (Step 1). If $x \in X \setminus M$, then f can be extended to g on $M + \mathbb{R}x$, such that $g \leq p$.

Lemma 4.4 (Step 2). We are going to consider the class $\mathcal{F} = \{ g : N \rightarrow \mathbb{R} : g|_M = f, g \leq p \}$ of all possible extensions of f (where N is a subspace containing M).

Step 1. Start by taking $y_1, y_2 \in M$, x as in the statement. Then

$$f(y_1) + f(y_2) \leq p(y_1 + y_2) \leq p(y_1 + x) + p(y_2 + x).$$

Hence $f(y_1) - p(y_1 - x) \leq p(y_2 + x) - f(y_2)$. Therefore

$$\sup_{y \in M} \{ f(y) - p(y - x) \} \leq \inf_{y \in M} \{ p(y + x) - f(y) \} = \alpha.$$

Now take $g(y + \lambda x) = f(y) + \lambda \alpha$.
We consider any $y + \lambda x \in M + Rx$. If $y \in M$, then $g(y) = f(y) \leq p(y)$ (the $\lambda = 0$ case). If $\lambda > 0$, then from choice of α

$$g(y + \lambda x) = f(Y) + \lambda \alpha$$

$$= \lambda f(y/\lambda) + \alpha$$

$$\leq \lambda p(y/\lambda + x)$$

$$= p(y + \lambda).$$

If $\lambda < 0$, then

$$g(y + \lambda x) = -\lambda f(-y/x) - \alpha$$

$$\leq -\lambda f(-y/\lambda) - f(-y/\lambda) + p(-y/\lambda - x)$$

$$\leq p(y + \lambda x).$$

\[\square \]

Step 2. $g_1, g_2 \in F$

Define $g_1 < g_2$ if $N_1 \subset N_2$ and $g_2 |_{N_1} = g_1$. By the Hausdorff Maximum Principle (i.e., axiom of choice) there exists a maximally ordered chain $\{g_{\alpha}\}$. Define $F : \cup_{\alpha} N_{\alpha} \to \mathbb{R}$ by setting $F(x) = g_{\alpha}(x)$ if $x \in N_{\alpha}$. It is clear that $F \leq p$.

1. $\cup_{\alpha} N_{\alpha}$ is a subspace
2. F is well-defined
3. F is a linear functional
4. $F \leq p$ for $x \in \cup N_{\alpha}$
5. $F|_{\mathcal{M}} = f$
6. $\cup N_{\alpha} = X$

F is a maximal extension. Indeed, it follows from maximality of the g_{α}; for any other maximal extension G, we have $G = g_{\alpha}$ for some α. Now if $x \in X \setminus \cup N_{\alpha}$ then Step 1 would yield a proper extension; so we’re done. \[\square \]

Theorem 4.5. Let X be a normed vector space.

1. If \mathcal{M} is a closed subspace of X and $x \in X \setminus \mathcal{M}$, then there is $f \in X^*$ such that $f|_{\mathcal{M}} = 0$, $\|f\| = 1$ and $f(x) = \inf_{y\in\mathcal{M}} \|y - x\|$.
2. If $x \in X \setminus \{0\}$, there is $f \in X^*$ such that $\|f\| = 1$ and $f(x) = \|x\|$.
3. Bounded linear functionals separate points.
4. For $x \in X$, define $\hat{x} : X^* \to \mathbb{R}$ by $\hat{x}(f) = f(x)$. The map \hat{x} is an isometry. Thus we can embed any normed space in a natural Banach space. \[\square \]
Consequences of Hahn-Banach

X is a normed vector space.

1. \(\mathcal{M} \) a closed subspace of \(X, x \in X \setminus \mathcal{M} \). Then there is an \(f \in X^* \) such that \(\|f\| = 1, f|_{\mathcal{M}} = 0 \) and \(f(x) = \inf_{y \in \mathcal{M}} \|x - y\| \).

When \(X \) is a Hilbert space and \(\mathcal{M} \) is a closed subspace, we have already seen something similar. Specifically, there is a nearest point \(x_0 \in \mathcal{M} \) where the infimum of the distance is attained. Moreover, we get a result about orthogonality: for all \(z \in \mathcal{M} \), we have \((x - x_0, z) = 0 \). For \(x \notin \mathcal{M} \), we have \(f(y) = (y, \frac{x - x_0}{\|x - x_0\|}) \) is a bounded linear functional. It is clear that \(\|f\| \leq 1 \), and since \(f(x - x_0) = \|x - x_0\| \) we actually have \(\|f\| = 1 \).

Thus (1) gives us a way to make some statements as if we had an inner product, even though we don’t.

Proof of (1). Consider \(f: \mathcal{M} + \mathbb{R}x \to \mathbb{R} \). We set \(f(y + \lambda x) = \lambda \delta \), for \(y \in \mathcal{M} \). We want to bound it by a sublinear functional. If \(\lambda = 0 \) we’re done, so assume \(\lambda \neq 0 \). We start with \(|f(y + \lambda x)| = |\lambda \delta| \), and want to make some manipulation to get a bound of \(\|y + \lambda x\| \).

Specifically, using the infimum from the definition of \(\delta \) we obtain \(\lambda \delta \leq |\lambda| \|x + \frac{y}{\lambda}\| = \|y + \lambda x\| \). Now by Hahn-Banach, there is an \(F: X \to \mathbb{R} \) such that \(F|_{\mathcal{M} + \mathbb{R}x} = f \). Now \(F(x) = \delta \) and \(F|_{\mathcal{M}} = 0 \). We haven’t used yet that \(\mathcal{M} \) is closed. It gives us a sequence of points \(y_\varepsilon \) such that \(\|x - y_\varepsilon\| \) is converging to \(\delta \). We can make some argument with a subsequence to get \(y_\varepsilon \) converging somehow.

For \(\varepsilon > 0 \), there is \(y_\varepsilon \in \mathcal{M} \) such that \(\delta \leq \|x - y_\varepsilon\| \leq \delta(1 + \varepsilon) \). Now \(F(x - y_\varepsilon) = \delta \), and

\[
|F(x - y_\varepsilon)| = \delta \geq \frac{\|x - y_\varepsilon\|}{1 + \varepsilon}
\]

2. \(x \in X, x \neq 0 \). Then there is \(f \in X^* \) such that \(f(x) = \|x\| \) and \(\|f\| = 1 \) (just take \(\mathcal{M} = \{0\} \)).

3. \(X^* \) separates points in \(X \); i.e., \(x \neq y \) means there is an \(f \in X^* \) such that \(f(x) \neq f(y) \).

Proof. Let \(z = x - y \neq 0 \). Then choose \(f \in X^* \) such that \(\|f\| = 1 \). \(f(x - y) = \|x - y\| > 0 \); thus \(f(x) \neq f(y) \).

4. \(x \in X; \hat{x}: X^* \to \mathbb{R} \), and \(\hat{x}(f) = f(x) \). Show that \(?: X \to (X^*)^* \) is an isometry.
Proof. First $|\hat{x}(f)| = |f(x)| \leq \|f\| \|x\|$; thus $\|\hat{x}\| \leq \|x\|$. So we only need to show the other direction. Start by assuming $x \neq 0$. Pick $f \in X^*$ with $\|f\| = 1$ such that $f(x) = \|x\|$. Then $\|\hat{x}\| \geq \|x\|$. The result follows. □

What this means is that we can always put a complete normed space into a bigger space.

Definition 5.1. A Banach space X is reflexive if $(X^*)^* = X$.

An example is $L^p(\mu)$, when $p \in (1, \infty)$ (follows from $L^p(\mu)^* = L^q$). First we have $(L^1(\mu))^* \supset (L^1(\mu))^{**}$, thus $L^1(\mu)$ is not reflexive. We don’t even know the dual of L^∞, so we can’t talk about the same question when $p = \infty$.

Baire Category Theorem

Definition 5.2. Let X be a topological space. Then $E \subset X$ is **nowhere dense** if $\text{int } E = \emptyset$. Equivalently, E^c is dense.

For example, the Cantor set. These sets are “swiss cheese”; they have holes everywhere. We will see lots of important applications to make precise statements.
Existence of Closest Points

Let X be a Banach space, \mathcal{M} a closed subspace, and consider $x \in X \setminus \mathcal{M}$. We say that x has a closest point in \mathcal{M} if there is a $y_x \in \mathcal{M}$ such that

$$\|x - y_x\| = \inf_{y \in \mathcal{M}} \|x - y\| = \delta \quad (\ast)$$

Today we will learn about spaces that always admit closest points.

Definition 6.1. A Banach space X is uniformly convex when for every $\epsilon > 0$ and any $x, y \in X$ with $\|x\| = \|y\| = 1$, if $\|x - y\| > \epsilon$ then $\frac{|x + y|^2}{2} < 1 - \delta$ and $\delta(\epsilon) \to 0$ as $\epsilon \to 0$.

In the Hilbert space case, we used the parallelogram law to prove that a sequence of y_n’s approaching the infimum was Cauchy. It gives a relationship between $\|x - y\|, \frac{|x + y|^2}{2}$ and the norms $\|x\|, \|y\|$.

Claim 6.2. If X is uniformly convex, then (\ast) holds. In particular, by the homework this holds for every L^p with $p \in (1, \infty)$.

Proof sketch of claim. Fix $x \notin \mathcal{M}$, and pick a sequence $y_k \in \mathcal{M}$ such that $\delta \leq \|x - y_k\| \leq \delta(1 + 2^{-k})$. Note that if $\{y_k\}$ is Cauchy, then since X is complete $y_k \to y$. Since \mathcal{M} is closed, $y \in \mathcal{M}$.

Let $z_k = \frac{x - y_k}{\|x - y_k\|}$. We show that $\{z_k\}$ is Cauchy if and only if y_k is Cauchy. Indeed,

$$z_k - z_j = \frac{y_j - y_k}{\|x - y_k\|} + (x - y_j) \frac{\|x - y_j\| - \|x - y_k\|}{\|x - y_j\| \|x - y_k\|}$$

Heuristically, the right term is of size $\delta \cdot (\delta 2^{-k})/\delta^2 = 2^{-k}$.

Assume $\{z_k\}$ is not Cauchy. Then there is an $\epsilon_0 > 0$ such that for all j, there is a $k_j \geq j$ such that $\|z_k - z_j\| \geq \epsilon_0$. By uniform convexity, $\|\frac{z_k + z_j}{2}\| < 1 - \delta_0$. We want to contradict minimality of δ. But

$$\delta \frac{z_k + z_j}{2} = \frac{x\delta}{2} \left(\frac{1}{\|x - y_k\|} + \frac{1}{\|x - y_j\|} \right) - \delta \left(\frac{y_k}{\|x - y_k\| + \|x - y_j\|} + \frac{y_j}{\|x - y_k\| + \|x - y_j\|} \right)$$

$$= \frac{1}{2} \left(\frac{\delta}{\|x - y_k\|} + \frac{\delta}{\|x - y_j\|} \right) \delta - \frac{\delta}{2} \left(\frac{y_k}{\|x - y_k\| + \|x - y_j\|} + \frac{y_j}{\|x - y_k\| + \|x - y_j\|} \right)$$

$$= M$$
Note from before that $\|M\| \leq \delta(1 - \delta_0)$. The first term tends to x and the second lies in \mathcal{M}, so we will end up contradicting minimality of δ.

Now
\[
\|x - \omega_{jk}\| \leq \|M\| + \|x\| \left(1 - \frac{1}{2} \left(\frac{\delta}{\|y_k - x\|} + \frac{\delta}{\|y_j - x\|}\right)\right) \leq \delta(1 - \delta_0) + \delta\delta_0/2
\]
and the result follows. □

So we have exhibited a family of spaces in which closest points exist. How can we construct an example of a space without minimizers? So we prove a consequence of (*) that’s easier to verify, and then we’ll construct a counterexample by making a space that doesn’t satisfy the consequence.

Let X be a Banach space such that (*) holds for every closed subspace \mathcal{M} and $x \notin \mathcal{M}$. Start with a bounded linear functional f such that $f(x) = 1$ and call $\mathcal{M} = \ker f$. Assume $y \in \mathcal{M}$ and $\|x - y\| = d(x,\mathcal{M})$. Set $z = x - y$. Then $f(z) = f(x) - f(y) = f(x) = 1$. Now $d(z,\mathcal{M}) = d(x,\mathcal{M}) = \|x - y\| = \|z\|$.

Now apply Hahn-Banach. There is a $g \in X^*$ such that $g|\mathcal{M} = 0$ and $\|g\| = 1$. For any $u \in X$, write $f(u) = f(f(u)x)$. Thus $u - f(u)x \in \ker f = \mathcal{M}$, so we have the decomposition $X = \mathcal{M} + \mathbb{R}x$. We can make $g(z) = \|z\|$, so $g = \|z\|f$ and thus $\|g\| = \|z\|\|f\|$. Therefore $\|f\| = \|z\|$ and $f(z) = \|f\|\|z\|$.

So if (*) holds, then for all $f \in X^*$ with $f \neq 0$, there is a $z \neq 0$ such that $f(z) = \|f\|\|z\|$. So if we can arrange a space X and $f \in X^*$ such that $|f(z)| < \|f\|\|z\|$ for all $z \neq 0$, it will follow that X lacks minimizers.

Take $X = L^1(\mathbb{R})$, and $f(h) = \int_\mathbb{R} h\phi(t) \, dt$. Here $\phi(t) = \chi([-1,1])e^{-1/t^2} + \frac{1}{12}\chi_{[-1,1]}$. Then $|f(z)| < \|f\|\|z\|_1$ and we get a contradiction.

Using more functional analysis, the best result is that minimizers exist if and only if X is reflexive.
Baire Category

Definition 7.1. Let \(X \) be a topological space. Then \(E \subset X \) is nowhere dense if \(\text{Int} \ E = \emptyset \) or \(E^c \) is dense.

Theorem 7.2 (Baire Category). Let \(X \) be a complete metric space. Then

1. If \(\{ U_n \}_{n \in \mathbb{N}} \) is a collection of open dense sets in \(X \), then \(\cap U_n \) is dense.

2. \(X \) is not a countable union of nowhere dense sets.

Proof. Assuming (1), prove (2). Assume \(X = \bigcup E_n \) of nowhere dense sets. Then also \(X = \bigcup E_n^c \). Taking complements, we get that \(\cap E_n^c \) is dense yet empty. This is a contradiction, so we’re done.

Now prove (2). Let \(W \) be an open set, and \(\{ U_n \} \) a collection of dense open sets in \(X \). We will construct a Cauchy sequence.

Since \(U_1 \) is dense, \(U_1 \) meets \(W \). Now \(U_1 \cap W \) is non-empty and open. Take \(x_1 \in U_1 \cap W \). Since it’s open, there is a positive \(r_1 < \frac{1}{2} \) such that \(B(x_1, r_1) \subset B(x_1, r_1) \cap U_1 \cap W \).

Since \(U_2 \) is open and dense, we can get \(x_2 \in B(x_1, r_1) \cap U_2 \). Again it’s open, so take a positive \(r_2 < 2^{-2} \) such that \(B(x_2, r_2) \subset B(x_1, r_1) \cap U_2 \).

Continuing inductively, we construct a sequence \(\{ x_j \} \) such that \(x_{j+1} \in B(x_j, r_j) \cap U_j \), \(r_j < 2^{-j} \), and

\[
B(x_{j+1}, r_{j+1}) \subset B(x_j, r_j) \cap U_j \subset B(x_1, r_1) \cap U_2 \cap U_3 \cap \cdots \cap U_j \Rightarrow B(x_j, r_j) \subset W \cap \left(\cap_{n=1}^j U_j \right).
\]

Claim 7.3. \(\{ x_j \} \) is Cauchy

Proof. Take \(n, m \geq 1 \). Then \(x_n, x_m \in B(x_1, r_1) \). It follows that \(d(x_n, x_m) \leq 2r_1 < 2^{1-l} \).

Since \(X \) is complete, the sequence \(\{ x_n \} \) converges to some \(x \). It follows that \(x \in B(x_j, r_j) \) for all \(j \), so \(x \in W \cap \left(\cap_{n=1}^j U_j \right) \). Thus \(\cap_{n=1}^j U_j \) meets every open set \(W \), and is therefore dense.

Some silly terminology that is frequently forgotten.
Definition 7.4. \(X \) is a topological space.

\(E \subset X \) is of first category (or meager) if \(E \) is a countable union of nowhere dense sets.

If \(E \) is not of first category, it is of second category.

The complement of a meager set is said to be residual or generic.

Don’t confuse these with terms from other areas of mathematics!

Corollary 7.5. In a complete metric space, a generic set is dense (when \(B \) is a ball, \(\overline{B} \) is complete).

Theorem 7.6 (Uniform boundedness principle). Let \(X \) be a Banach space, \(Y \) a normed vector space, and \(A \subset L(X,Y) \). Suppose that for all \(x \in X \), \(\sup_{T \in A} \| Tx \| < \infty \). Then \(\sup_{T \in A} \| T \| < \infty \).

This has useful corollaries, for instance Problem 2 from the final in Math 525.

Consider \(\{ f_n \} \in L^2(\mu) \) with \(\sup \| f_n \|_2 < \infty \). Then there is a subsequence \(\{ f_{n_k} \} \) such that

\[
\int f_{n_k} g \, d\mu \to \int f g \, d\mu, \quad \forall g \in L^2(\mu).
\]

Claim 7.7 (A converse statement). Let \(\{ g_n \} \in L^2(\mu) \) be a weakly convergent sequence. Then \(\sup \| g_n \|_2 < \infty \).

Proof. Since \(\int g_n h \, d\mu \) converges for \(h \) fixed, we have \(\sup \int g_n h \, d\mu < \infty \). Take \(A = \{ T_n \} \), where \(T_n(h) = \int g_n h \, d\mu \). Then \(T_n \in L(L^2(\mu),\mathbb{R}) \) where we think of \(L^2(\mu) \) as a Banach space now.

\(\sup_{T_n \in A} \| T_n(h) \| < \infty \) for all \(h \in L^2(\mu) \). Using uniform boundedness followed by Reisz Representation Theorem, \(\sup \| T_n \| = \sup \| g_n \|_2 < \infty \) and the result follows.

Uniform boundedness principle. Let \(E_i = \{ x \in X : \sup_{T \in A} \| Tx \| < i \} \). We can also write

\[
E_i = \bigcap_{T \in A} \{ x \in X : \| Tx \| \leq i \}.
\]

Now \(X = \bigcup E_i \). By Baire Category, there is some \(n \) such that \(E_n \) is not nowhere dense. Since \(T \) is continuous and \(\| \cdot \| \) is continuous, it follows that \(E_n \) is an intersection of closed sets and is therefore closed.

Since \(E_n = \overline{E_n} \) and \(E_n \) is not nowhere dense, it follows that \(\text{Int } E_n \neq \emptyset \). Thus there is an \(x_0 \in E_n \) and \(r_0 > 0 \) such that \(B(x_0,r_0) \subset B(x_0,2r_0) \subset E_n \).

Take an \(x \in X \) such that \(\| x \| \leq r_0 \). Then \(x + x_0 \in B(x_0,r_0) \subset E_n \), so

\[
\| Tx \| \leq \| T(x + x_0) \| + \| T(-x_0) \| \leq 2n.
\]
Thus \(\|Tx\| \leq 2n \). Take \(\overline{B(0, r_0)} \subset E_{2n} \). Then for all \(y \in X \setminus 0 \), \(r_0 \frac{y}{\|y\|} \in \overline{B(0, r_0)} \). Thus
\[
T \left(r_0 \frac{y}{\|y\|} \right) \leq 2n
\]
so \(\|T\| \leq \frac{2n}{r_0} \).

Definition 7.8. Let \(X, Y \) be topological spaces. Then “\(f : X \to Y \) is open” means that \(f(\mathcal{U}) \) is open whenever \(\mathcal{U} \) is open.

Note. If \(X, Y \) are normed vector spaces and \(f : X \to Y \) is linear, to show that \(f \) is open it suffices to check that \(f(B(0,1)) \) contains some ball \(B(0, r) \).

Proof. If \(f \) is open, then since \(f(0) = 0 \) the criterion clearly holds.

Now suppose \(\mathcal{U} \subset X \) is open. Then take \(y \in f(\mathcal{U}) \). There is some \(x \in \mathcal{U} \) such that \(y = f(x) \). Then there is a \(\delta > 0 \) such that \(B(x, \delta) \subset \mathcal{U} \). But \(B(x, \delta) = x + \delta B(0,1) \). Hence \(f(x) + \delta f(B(0,1)) \subset f(\mathcal{U}) \). By hypothesis, there is an \(r > 0 \) such that \(B(0,r) \subset f(B(0,1)) \). Thus
\[
B(y, \delta r) \subset f(\mathcal{U})
\]
and the result follows. \(\square \)
More Open Mapping Theorem

Theorem 8.1 (Open Mapping Theorem). Let X, Y be Banach spaces. If $T \in \mathcal{L}(X, Y)$ is surjective, then it is open.

Recall the corollary from last time:

Corollary 8.2. If $T \in \mathcal{L}(X, Y)$ is a bijection, then T is an isomorphism.

This amounts to showing that T^{-1} is continuous.

Open Mapping. From our remark last time, it suffices to show that there is a $\delta > 0$ such that $B(0, \delta) \subset TB(0, 1)$. Write

$$X = \bigcup_{n=1}^{\infty} B_n, \quad B_n = B(0, n) \subset X.$$

Since T is surjective,

$$Y = \bigcup_{n=1}^{\infty} TB_n = \bigcup_{n=1}^{\infty} nTB_1.$$

As Y is complete, by Baire Category there is an n such that nTB_1 is not nowhere dense. Since $nTB_1 = n\overline{TB_1}$, there is a $y_0 \in \text{Int} \overline{TB_1}$. Hence there is an $r > 0$ such that $B(y_0, 4r) \subset \overline{TB_1}$.

Claim 8.3. $B(0, r) \subset \overline{TB_1}$

Proof. Let $y_1 \in B(y_0, 2r) \cap \overline{TB_1} \neq \emptyset$, and take $y_1 = Tx_1$ for $x_1 \in B_1$. Then $B(y_1, 2r) \subset B(y_0, 4r) \subset \overline{TB_1}$. Let $y \in B(0, 2r)$. Then $y = y + y_1 - Tx_1 \in -Tx_1 + \overline{TB_1}$.

Recall $x_1 \in B_1$. Thus $-x_1 + B_1 \subset B_2$. If $y \in B(0, 2r)$ then $y \in \overline{TB_2}$, so $\frac{y}{2} \in \overline{TB_1}$. \hfill \Box

Remark. For $y \in Y$ with $\|y\| < r2^{-m}$, we have $2^m y \in B(0, r)$. Thus $2^m y \in \overline{TB_1}$. Hence $y \in 2^{-m}\overline{TB_1}$.

Claim 8.4. $B(0, \frac{r}{2}) \subset \overline{TB_1}$

Proof. For $y \in B(0, \frac{r}{2})$ we need $z \in B_1$ such that $y = Tz$. Since $B(0, \frac{r}{2}) \subset \overline{TB_{1/2}}$, we have

$$B(y, \frac{r}{4}) \cap TB_{1/2} \neq \emptyset.$$

Thus there is a $z_1 \in B_{1/2}$ such that $Tz_1 \in B(y, \frac{r}{4})$. Consequently

$$y - Tz_1 \in B(0, \frac{r}{4}) \subset \overline{TB_{1/4}}.$$

Next we get $z_2 \in B_{1/4}$ such that $y - Tz_1 - Tz_2 \in B(0, \frac{r}{8})$. Continuing inductively, we obtain $z_n \in B_{2^{-n}}$ such that

$$y - \sum_{i=1}^{n} Tz_i \in B\left(0, \frac{r}{2^{n+1}}\right).$$

Note that $\sum_{n=1}^{\infty} \|z_n\| \leq \sum 2^{-n} = 1$, so by completeness of X we have $\sum_{n=1}^{\infty} z_n = z$.

We claim that $y = Tz$. To see it, use continuity of T. Then $Tz = \lim T(\sum z_i) = \lim \sum Tz_i$. Hence $\|y - \sum Tz_i\| < r2^{-n-1}$ so $y = Tz$. We used completeness of Y to apply the Baire Category theorem; injectivity only needed in the corollary.

Closed Graph Theorem

Definition 8.5. 1. Let X, Y be normed vector spaces, and T is linear. Then

$$\text{graph } T = \{(x, y) \in X \times Y : y = Tx\}$$

2. T is said to be closed if $\text{graph } T$ is a closed subspaces of $X \times Y$ (note that $\text{graph } T$ is linear).

Remark. If $T \in L(X, Y)$, then $\text{graph } T$ is closed.

Proof. Assume $(x_n, y_n) \in \text{graph } T$ and $(x_n, y_n) \to (x, y)$. We need to show that $(x, y) \in \text{graph } T$. Saying $(x_n, y_n) \to (x, y)$ is the same as saying $x_n \to x$ and $Tx_n \to y$. By continuity of T, $Tx_n \to x$. Thus $Tx_n \to y$.

Theorem 8.6 (Closed Graph Theorem). Let X, Y be Banach and $T: X \to Y$ linear and closed. Then T is continuous.

In general, to show that T is continuous it suffices to show that if $x_n \to x$, then Tx_n converges and its limit is Tx. Using the closed graph theorem, it is enough to show that if $(x_n, Tx_n) \to (x, y)$, then $y = Tx$.

Proof. Consider the projection $\pi_1, \pi_2: X \times Y \to X, Y$. These are bounded linear maps. Moreover, $\pi_1 = \pi_1|_{\text{graph } T} \in L(\text{graph } T, X)$ and likewise for π_2. Now $\text{graph } T$ is Banach, since it’s a closed subset of the complete metric space $X \times Y$. Since π_1 is surjective, by the open mapping theorem it is open.

If $\pi_1(x, Tx) = \pi_1(z, Tz)$ then $x = z$; hence π_1 is a bijection. Consequently π_1 is an isomorphism. Then $\pi_1^{-1}: X \to \text{graph } T$ is continuous. However, $Tx = \pi_2 \circ \pi_1^{-1}(x)$; thus T is continuous as desired.
Definition 9.1. Let X be a Banach space.

1. A sequence $\{x_n\} \subset X$ is weakly convergent if

$$\lim_{n \to \infty} f(x_n) \in \mathbb{R} \quad \forall f \in X^*.$$

2. $\{x_n\}$ converges weakly to $x \in X$ if

$$\lim_{n \to \infty} f(x_n) = f(x) \quad f \in X^*.$$

This is denoted by $x_n \rightharpoonup x$.

Example 9.2. Since $L^q = (L^p)^*$, we have the following concrete example. For $p \in (1, \infty)$, then $f_n \rightharpoonup f$ in L^p. Then for all $g \in L^q$, $\int f_n g \, d\mu \to \int f g \, d\mu$.

Theorem 9.3. Let X be a Banach space.

1. If $x_n \to x$ in X, then $x_n \rightharpoonup x$ in X.

2. If $x_n \rightharpoonup x$ in X then $\sup_n \|x_n\| < \infty$ and $\|x\| \leq \lim \inf_n \|x_n\|$.

Example 9.4 (Riemann-Lebesgue Lemma). Take $g \in C([0, 2\pi])$ and $f_n \in L^2([0, 2\pi])$, $f_n = \cos nx$. Then

$$\int_0^{2\pi} g f_n(x) \, dx = \int_0^{2\pi} g \cos nx \, dx \to 0,$$

which says $f_n \rightharpoonup 0$. Also $\int_0^{2\pi} (\cos nx)^2 \, dx = \pi$.

Proof of theorem. 1. For $f \in X^*$,

$$|f(x_n) - f(x)| = |f(x_n - x)| \leq \|f\| \|x_n - x\| \to 0$$

2. For $f \in X^*$, $f(x_n) \to f(x)$. Then $\{f(x_n)\}$ is bounded in \mathbb{R}. Now $\sup_n \|f(x_n)\| < \infty$. Recall that we can embed $x_n = \hat{x}_n$ in X^{**}. Then $\|f(x_n)\| = \|\hat{x}_n(f)\|$ and $\|x_n\| = \|\hat{x}_n\|$. By the uniform boundedness principle, it follows from $\sup_n \|\hat{x}_n(f)\| < \infty$ that $\sup_n \|x_n\| = \sup_n \|\hat{x}_n\| < \infty$.

Now

$$|\hat{x}(f)| = |f(x)| = \lim_n |f(x_n)| \leq \|f\| \lim \inf_n \|x_n\|.$$

Hence $\|x\| = \|\hat{x}\| \leq \lim \inf_n \|x_n\|$.
Definition 9.5. X is Banach. A sequence $\{f_n\} \subset X^*$ is called weak* convergent if
\[
\lim_{n \to \infty} f_n(x) \in \mathbb{R}, \quad \forall x \in X.
\]
We say $f_n \to_w^* f$ if $\lim_{n \to \infty} f(x) = f(x)$.

For reflexive spaces, this is the same as weak convergence.

Theorem 9.6. X is Banach and $f_n, f \in X^*$.
1. $f_n \to f$ implies $f_n \to_w^* f$
2. $f_n \to_w^* f$ implies $\sup \|f_n\| < \infty$ and $\|f\| \leq \lim \inf \|f_n\|$.

If X is reflexive ($X^{**} = X$). Then w^* convergence is the same thing as w convergence in X^*.

Theorem 9.7. X is Banach, $\{f_n\}, f \subset X^*$. Then $f_n \to_w^* f$ if and only if $\sup \|f_n\| < \infty$. Also $\lim f_n(x) = f(x)$ if it holds for all $x \in D$, D dense in X.

Proof. \Rightarrow This is easy.
\[
\begin{align*}
f_n(x) & \to f(x) \quad \text{if and only if} \quad \sup \|f_n\| < \infty \quad \text{and} \quad \|f\| \leq \lim \inf \|f_n\|.
\end{align*}
\]

Recall Problem 2 from the 525 final: Given bounded functions in L^2, there is a subsequence that converges weakly in L^2.

Corollary 9.8. For $p \in (1, \infty)$, let $\{f_n\} \subset L^p(\mathbb{R}^d)$ such that $\sup \|f_n\|_p < \infty$. Then there is a subsequence $\{f_{n_k}\} \subset \{f_n\}$ which converge weakly in L^p.

Proof.

Step 1: $L^q(\mathbb{R}^d) = (L^p(\mathbb{R}^d))^{*}$ is separable (take cutoffs of polynomials on balls). Take D to be the constructed countable dense subset.

Step 2: By diagonalization, construct $\{f_{n_k}\} \subset \{f_n\}$ such that
\[
\int f_{n_k} g \to Tg \quad \forall g
\]

Step 3: For $g \in L^q$, show that Tg is linear and bounded. Thus by Reisz Representation, we obtain an $f \in L^p$ such that $Tg = \int fg \, dx$.

The most general result in this direction is Alaoglu’s Theorem, which we won’t prove since it is abstract and uses Tychonoff’s Theorem. In addition, it requires defining the topology in terms of nets (we have only talked about sequences).

Theorem 9.9. If X is Banach, then the unit ball in X^* is compact in the weak* topology.
Inequalities

Lemma 10.1 (Chebyshev’s Inequality). If \(f \in L^p, \ p \in (0, \infty), \) and \(\alpha > 0 \) then

\[
\mu\{x: |f(x)| \geq \alpha\} \leq \left(\frac{\|f\|_p}{\alpha} \right)^p
\]

Proof.

\[
\|f\|_p^p = \int |f|^p \, d\mu \\
\geq \int_{|f(x)| \geq \alpha} \alpha^p \\
= \alpha^p \mu\{x: |f(x)| \geq \alpha\}
\]

\[\square\]

Let \((X, \mathcal{M}, \mu)\) and \((Y, \mathcal{N}, \nu)\) be complete \(\sigma\)-finite spaces, and fix \(p \in [1, \infty]\). Let \(K: X \times Y \to \mathbb{R}\) be \(\mathcal{M} \times \mathcal{N}\)-measurable. Suppose there is \(C > 0\) such that

\[
\int |K(x, y)| \, d\nu(y) \leq C \quad \mu - \text{a.e. } x \\
\int |K(x, y)| \, d\mu(x) \leq C \quad \nu - \text{a.e. } y
\]

Theorem 10.2 (Folland, 6.18). If \(f \in L^p(\nu), \) then

1. The integral \(T_f(x) = \int K(x, y)f(y) \, d\nu(y) \) converges absolutely for \(\mu\)-a.e. \(x \in X \)
2. \(T_f \in L^p(\mu) \)
3. \(\|T_f\|_{L^p(\mu)} \leq C \|f\|_{L^p(\nu)} \)

Proof. Suppose \(p \in (1, \infty) \). Write \(|K(x, y)||f(y)| = K(x, y)^{1/q}|K(x, y)|^{1/p}|f(y)| \). Then by Hölder,

\[
\int |K(x, y)||f(y)| \, d\nu(y) \leq C^{1/q} \left(\int |K(x, y)||f(y)|^p \, d\nu(y) \right)^{1/p}.
\]
To show absolute convergence a.e., it suffices to show it belongs to $L^p(\mu)$. Taking p-norms,

$$
\left[\int \left(\int |K(x,y)||f(y)| \, d\nu(y) \right)^p \, d\mu(x) \right]^{1/p} \leq \int \left(\int |K(x,y)||f(y)|^p \, d\nu(y) \right)^{1/p} \, d\mu(x)
$$

This required Tonelli, after which Fubini applies to yield $K(x,\cdot)f \in L^1(\nu)$ for a.e. x. Thus Tf is defined a.e., and $\|Tf\|_p \leq C\|f\|_p$ as desired.

The $p = 1$ doesn’t even need Hölder; and is easier to prove. The $p = \infty$ case is trivial.

\[\square\]

Minkowski’s Inequality for Integrals

(X, \mathcal{M}, ν) and (Y, \mathcal{N}, μ) complete σ-finite, $p \in [1, \infty)$. $f: X \times Y \to \mathbb{R}, \mathcal{M} \times \mathcal{N}$-measurable.

Theorem 10.3. a. If $f \geq 0$ a.e. then

$$
\left(\int \left(\int f(x,y) \, d\nu(y) \right)^p \, d\mu(x) \right)^{1/p} \leq \int \left(\int f(x,y)^p \, d\mu(x) \right)^{1/p} \, d\nu(y)
$$

b. If $p \in [1, \infty]$, $f(\cdot, y) \in L^p(\mu)$ for ν a.e. y, and $y \mapsto \|f(\cdot, y)\|_{L^p(\mu)}$ is ν measurable and in $L^1(\nu)$, then for μ a.e. x, $f(x, \cdot) \in L^1(\nu)$, and $x \mapsto \int f(x,y) \, d\nu(y)$ is in $L^p(\mu \nu)$. Moreover,

$$
\left\| \int f(\cdot, y) \, d\nu(y) \right\|_{L^p(\mu \nu)} \leq \int \|f(\cdot, y)\|_{L^p(\mu)} \, d\nu(y).
$$

Proof. For $p = 1$ we use Tonelli, and we compute with duality. Now $p \in (1, \infty)$. Take $g \in L^q(\mu)$. Then we compute by duality the p-norm as follows:

$$
\int \left(\int f(x,y) \, d\nu(y) \right) |g(x)| \, d\mu(x) = \int \left[\int |f(x,y)|g(x)| \, d\mu(x) \right] \, d\nu(y)
$$

$$
\leq \int \left[\left(\int |f(x,y)|^p \, d\mu(x) \right)^{1/p} \left(\int |g(x)|^q \, d\mu(x) \right)^{1/q} \right] \, d\nu(y)
$$

$$
= \|g\|_{L^q(\mu)} \int \left[\left(\int |f(x,y)|^p \, d\mu(x) \right)^{1/p} \right] \, d\nu(y).
$$

Then (a) follows from [Folland, 6.14] and (b) follows from (a) and Fubini (except when $p = \infty$; then it is monotonicity of the integral). \[\square\]

The following inequality is useful on prelims, but be sure to state it correctly!

Theorem 10.4 (Folland, 6.20). Let K be a Lebesgue measurable function on $(0, \infty) \times (0, \infty)$ such that $K(\lambda x, \lambda y) = \lambda^{-1}K(x, y)$ for all $\lambda > 0$ and

$$
\int_0^\infty |K(x,1)|x^{-1/p} \, dx = C < \infty
$$
for some $p \in [1, \infty]$. For $f \in L^p$ and $g \in L^q$, let

$$Tf(y) = \int_0^\infty K(x, y) f(x) \, dx, \quad Sg(x) = \int_0^\infty K(x, y) g(y) \, dy.$$

Then Tf and Sg are defined a.e., and $\|T\|, \|S\| \leq C$.

Corollary 10.5 (Folland, 6.21). Let

$$Tf(y) = y^{-1} \int_0^y f(x) \, dx, \quad Sg(x) = \int_x^\infty \frac{g(y)}{y} \, dy.$$

For $p \in (1, \infty]$ (so $q \in [1, \infty]$) we have

$$\|Tf\|_p \leq \frac{p}{p-1} \|f\|_p, \quad \|Sg\|_q \leq q \|g\|_q.$$

Proof. Just take

$$K(x, y) = \frac{\chi_{x<y}(x, y)}{y}$$

in the previous theorem. \qed
Finishing the proof from last time

Theorem 11.1. $K: (0, \infty)^2 \to \mathbb{R}$ Lebesgue measurable, $p \in [1, \infty]$.

1. $K(\lambda x, \lambda y) = \lambda^{-1}K(x, y)$, $\lambda > 0$.
2. $\int_0^\infty |K(x, 1)|x^{-1/p} \, dx = C$

For $f \in L^p$, $g \in L^q$, define

$$Tf(y) = \int_0^\infty K(x, y)f(x) \, dx, \quad Sg(y) = \int_0^\infty K(x, y)g(y) \, dy.$$

Then $\|Tf\|_p \leq C\|f\|_p$ and $\|Sg\|_q \leq C\|g\|_q$.

Proof. Taking $x = zy$ and $f_z(y) = f(zy)$,

$$\int_0^\infty |K(x, y)||f(x)| \, dx = \int_0^\infty |K(zy, y)||f(zy)||y \, dz$$

$$= \int_0^\infty y^{-1}|K(z, 1)||f_z(y)||y \, dz$$

$$= \int_0^\infty |K(z, 1)||f_z(y)| \, dz.$$

Thus changing $x = zy$ yields

$$\|f_z\|_p = \left(\int_0^\infty |f_z(y)|^p \, dy \right)^{1/p}$$

$$= \left(\int_0^\infty |f(zy)|^p \, dy \right)^{1/p}$$

$$= z^{-1/p} \left(\int_0^\infty |f|^p \, dx \right)^{1/p}$$

$$= z^{-1/p}\|f\|_p.$$
Then we use Minkowski to yield

\[\| Tf \|_p = \left(\int_0^\infty \left(\int_0^\infty |K(z, 1)||f_z(y)| \, dz \right)^p \, dy \right)^{1/p} \]
\[\leq \int_0^\infty \left(\int_0^\infty |K(z, 1)|^p |f_z(y)|^p \, dy \right)^{1/p} \, dz \]
\[= \int_0^\infty \left(|K(z, 1)|^p \int_0^\infty |f_z(y)|^p \, dy \right)^{1/p} \, dz \]
\[= \int_0^\infty |K(z, 1)| \| f_z \|_p \, dz \]
\[= \int_0^\infty |K(z, 1)| |z|^{-1/p} \| f \|_p \, dz \]
\[= C \| f \|_p. \]

Now we switch over to handle the Sg case. Switch via \(x = y^{-1} \) and flipping bounds yields

\[\int_0^\infty |K(1, y)| y^{-1/q} \, dy = \int_0^\infty y^{-1} |K(y^{-1}, 1)| y^{-1/q} \, dy \]
\[= \int_0^\infty x^{1+1/q} x^{-2} |K(x, 1)| \, dx \]
\[= \int_0^\infty x^{-1/p} |K(x, 1)| = C. \]

\[\square \]

Dual of \(L^\infty \)

Consider the compact metric space \((X, d)\). Set \(C(X) = \{ f : X \to \mathbb{R} \text{ continuous} \} \). Let

\[\| f \|_\infty = \sup_{x \in X} |f(x)|. \]

Remark.

1. \(C(X) \) is a Banach space.
2. \(\text{supp } f = \{ x \in X : f(x) \neq 0 \} \)
3. \(A, B \subset X \text{ closed and disjoint, then we have the continuous function} \)

\[f(x) = \frac{d(x, A)}{d(x, A) + d(x, B)}, \quad d(x, A) = \inf_{a \in A} d(x, a). \]

where \(f = 0 \) on \(A \) and \(f = 1 \) on \(B \).
4. Partitions of unity: K compact, and \{O_n\} an open cover. There are \(\eta_k: X \to [0, 1]\) such that \(\sum_{n=1}^{m} \eta_k = 1\) in K, where \(\text{supp} \eta_k \subseteq O_k\).

5. \(\mu\) is Borel regular on \((X, d)\) if for all \(E \in B_X\) and for all \(\epsilon > 0\), there is an open \(U_\epsilon \supset E\) such that \(\mu(U_\epsilon \setminus E) < \epsilon\). In addition, there is a compact \(F_\epsilon \subseteq E\) such that \(\mu(E \setminus F_\epsilon) < \epsilon\).

Clarification of Borel measures. If \(\mu\) is a Borel measure on \(X\), it is regular if for each ball \(B\), \(\mu(B) < \infty\). If \(\mu\) is any measure on \(X\), then \(\mu\) is a metric measure if whenever \(d(A, B) > 0\), we have \(\mu(A \cup B) = \mu(A) + \mu(B)\) (the Caratheodory condition). We proved a while ago that if this condition holds, then \(\mu\) is a Borel regular measure.

Candidate for the dual

Define

\[
M(X) = \{\text{set of finite signed Borel regular measures on } X\}.
\]

Given \(\mu \in M(X)\), define \(\|\mu\| = |\mu|(X)\). Then \((M(X), \|\cdot\|)\) is Banach. Indeed, it is linear and we have a norm. If \(\|\mu\| = 0\), then \(\mu^+(X) + \mu^-(X) = 0\) so each is zero. Triangle inequality follows by checking it for \(\mu^+\) and \(\mu^-\) separately.

Suppose \(\{\mu_n\} \subseteq M(X)\) converge absolutely, i.e. \(\sum_{n=1}^{\infty} \|\mu_n\| < \infty\). Then \(\sum_{n=1}^{\infty} \mu_n(X) < \infty\) and same for \(-\). Then \(\sum_{n \geq 1} \mu_n^\pm\) are both Borel regular finite measures. To see this, we need to take intersections of open sets covering and unions of closed sets inside. Now take
\(\mu = \mu^+ - \mu^-\), and it remains to show \(\|\mu - \sum_{n=1}^{l} \mu_n\| \to 0\) as \(l \to \infty\).

Definition 11.2. \(\ell: C(X) \to \mathbb{R}\) is called a **positive** linear functional if \(\ell(f) \geq 0\) for all \(f \geq 0\).

Remark. If \(\ell\) is a positive linear functional, then \(\|\ell\|_{\infty} < \infty\) and \(\|\ell\| = \ell(1)\).

Proof. \(|f(x)| \leq \|f\|\); thus \(g = \|f\| - f \geq 0\), and \(h = \|f\| + f \geq 0\). Thus \(|\ell(f)| \leq \|f\|\ell(1)\); equality when \(f = 1\). \(\square\)
Theorem 12.1. Let X be a compact metric space, and ℓ a positive linear functional. There is a unique (positive) finite Borel measure μ such that
$$\ell(f) = \int f \, d\mu \quad \forall f \in C(X).$$

We start on the proof of existence.

For $V \subset X$ open, set
$$\rho(V) = \sup_{f \in C(X)} \ell(f), \quad 0 \leq f \leq 1 \text{ and } \text{supp } f \subset V.$$

Now for all $E \subset X$, set
$$\mu_*(E) = \int_{V \supset E} \rho(V), \quad V \text{ open.}$$

Claim 12.2. μ_* is a finite metric outer measure

This comprises the following:

(a) μ_* is an outer measure: $\mu_*(\emptyset) = 0$ and countable subbaditivity

(b) μ_* is a metric measure:
$$\mu_*(E_1 \cup E_2) = \mu_*(E_1) + \mu_*(E_2), \quad d(E_1, E_2) > 0$$

Proof. Note that $\rho(X) = \ell(1)$ because for all $f \in C(X), 0 \leq f \leq 1$ we have
$$0 \leq \ell(f) \leq \|f\| \leq \ell(1) < \infty.$$

Thus for $E \subset X$, we have $\mu_*(E) \leq \rho(X) < \infty$.

To prove (a), note that if V is open then $\mu_*(V) = \rho(V)$, and $\mu_*(\emptyset) = \rho(\emptyset) = \ell(0) = 0$. Now suppose that $E_1 \subset E_2$. Then for any open $O \supset E_2$, we have $O \supset E_1$. Thus from the infima definition, $\mu_*(E_1) \leq \mu_*(E_2)$.

For countable subbaditivity, take $\{V_i\}_{i=1}^\infty$ to be an open partition of V. Take $g \in C(X)$, with $0 \leq g \leq 1$ and $\text{supp } g \subset V$. Since X is compact, $\text{supp } g$ is compact. Take a partition of unity $\{\eta_i\}$ subordinate to $\{V_i\}$, and write $g = \sum_{i=1}^m \eta_ig$. Since $0 \leq \eta_ig \leq 1$ and $\text{supp } \eta_ig \subset V_i$,
$$\ell(g) = \ell \left(\sum_{i=1}^m \eta_i g \right)$$
$$= \sum_{i=1}^m \ell(\eta_i g)$$
$$\leq \sum_{i=1}^m \rho(V_i) = \sum_{i=1}^m \mu_*(V_i)$$
$$\leq \sum_{i=1}^\infty \mu_*(V_i).$$
Thus \(\mu_* V \leq \sum_{i=1}^{\infty} \mu_*(V_i) \).

Now we extend to countable subadditivity on all partitions; take \(E = \bigcup_{k=1}^{\infty} E_k \). Then choose \(U_k \supseteq E_k \) such that \(\mu_* U_k \leq \mu_*(E_k) + 2^{-k} \). Then \(E \subset \bigcup_{k=1}^{\infty} U_k \), and

\[
\mu_* E \leq \sum_{i=1}^{\infty} \mu_* E_i + \epsilon, \quad \forall \epsilon > 0.
\]

Thus general countable subadditivity follows, completing the proof of (a).

For (b), start with \(E_1, E_2 \) such that \(d(E_1, E_2) > 0 \). Then there are open \(O_1 \supseteq E_i \) such that \(d(O_1, O_2) > 0 \) (take unions of open balls to get this). Take \(g_i \in C(X) \) such that \(0 \leq g_i \leq 1 \) and \(\text{supp } g_i \subset O_i \). Since \(d(E_1, E_2) > 0 \), it follows that \(\text{supp } g_1 \cap \text{supp } g_2 = \emptyset \). Thus \(0 \leq g_1 + g_2 \leq 1 \) and consequently

\[
\ell(g_1 + g_2) = \ell(g_1) + \ell(g_2) \leq \mu_*(O_1 \cup O_2).
\]

Taking suprema over \(g_1, g_2 \), it follows that \(\mu_* O_1 + \mu_* O_2 \leq \mu_*(O_2 \cup O_2) \).

Choose an open \(O \supseteq E_1 \cup E_2 \). Then \(E_i \subset O \cap O_i \), so

\[
\mu_* E_1 + \mu_* E_2 \leq \mu_*(O \cap O_1) + \mu_*(O \cap O_2) \\
\quad \leq \mu_*(O) \\
\leq \mu_*(O).
\]

Consequently, \(\mu_*|_{\mathcal{B}_X} = \mu \) is a finite Borel regular measure such that \(\mu(X) = \ell(1) \). It remains to show that for all \(f \in C(X) \),

\[
\int f \, d\mu = \ell(f).
\]

Claim 12.3. For all \(\epsilon > 0 \) and open \(U \), there is an \(h \in C(X) \) such that

\[
\ell(h) \leq \mu U \leq \ell(h) + \epsilon, \quad 0 \leq h \leq 1 \text{ and } \text{supp } h \subset U.
\]

Proof. For every \(\epsilon > 0 \) and for all open \(U \), there is a compact \(K \subset U \) such that \(\mu(U \setminus K) < \epsilon/2 \). Then by Urysohn, there is an \(h \in C(X) \) such that \(0 \leq h \leq 1 \), \(h = 1 \) on \(K \), and \(\text{supp } h \subset U \). By definition of \(\mu_* \), there is a \(g \in C(X) \) such that \(0 \leq g \leq 1 \) and \(\mu(U) \leq \ell(g) + \epsilon/2 \). Note that \(1 \geq g \geq h \geq 0 \). Writing \(g = h + (g - h) \), observe that \(0 \leq g - h \leq 1 \) and \(\text{supp } (g - h) \subset U \setminus K \) (which is open). Then

\[
\mu(U) \leq \ell(g) + \epsilon/2 \\
= \ell(h) + \epsilon/2 + \ell(g - h) \\
\leq \ell(h) + \epsilon/2 + \mu(U \setminus K).
\]

Thus \(\ell(h) \leq \mu(U) \leq \ell(h) + \epsilon \), as desired.
Definition 13.1. A linear functional ℓ on $C(X)$ is called **positive** if
\[\ell(f) \geq 0 \quad \text{whenever } f \geq 0. \]

Let X be a compact metric space, and ℓ a positive linear functional on $C(X)$.

Theorem 13.2. There is a unique Borel regular finite measure μ such that
\[\ell(f) = \hat{\int} f \, d\mu, \quad \forall f \in C(X). \]

Proof. Continued from last time. For open V, we set
\[\rho(V) = \sup \{ \ell(f) \}, \quad \text{supremum taken over } f \in C(X), 0 \leq f \leq 1, \text{supp } f \subset V \]

Then we set $\mu, E = \int \rho(V)$ over open $V \supset E$. Next we define $\mu = \mu_*|_{B_X}$ (the Borel σ-algebra). We showed that μ is a finite regular Borel measure, and $\mu(X) = \ell(1)$. In addition, if U is open, then for any $\epsilon > 0$ there is a compact $K \subset U$ and $h \in C(X)$ such that $\mu(U \setminus K) < \epsilon$, $0 \leq h \leq 1$, $h = 1$ on K, supp $h \subset U$, and
\[\ell(h) \leq \mu(U) \leq \ell(h) + \epsilon. \]

Claim 13.3 (Existence).
\[\ell(f) = \int f \, d\mu, \quad \forall f \in C(X) \quad (\star) \]

Note that both sides are linear; hence by the identity $f = f^+ - f^-$, it suffices to verify the result for $f \geq 0$. So assume without loss of generality that this is the case.

Fix an $\epsilon > 0$, and choose
\[0 = t_0 < t_1 < \cdots < t_N, \quad t_{N-1} < \|f\|_\infty < t_N, \quad 0 < t_{i+1} - t_i < \epsilon, \quad \mu(f^{-1}(t_i)) = 0. \]

If $s \neq t$ then $f^{-1}(s) \cap f^{-1}(t) = \emptyset$. Hence there are only countable many s values such that $\mu(f^{-1}(s)) > 0$, since $\mu(X) < \infty$ (this is a general set theoretic principle; see [Folland, Chapter 0]).

Write $U_i = f^{-1}(t_{i-1}, t_i)$, which is open. Take compact $K_i \subset U_i$ such that $\mu(U_i \setminus K_i) < \frac{\epsilon}{2N}$ and $h_i \in C(X)$ such that $0 \leq h_i \leq 1$, supp $h_i \subset U_i$, $h_i = 1$ on K_i, and
\[\ell(h_i) \leq \mu(U_i) \leq \ell(h_i) + \frac{\epsilon}{2N}. \]
To prove (\textasteriskcentered), decompose
\[f = f \left(1 - \sum_{i=1}^{N} h_i \right) + \sum_{i=1}^{N} h_i f \]
and observe that
\[
\ell \left[f \left(1 - \sum_{i=1}^{N} h_i \right) \right] = \| f \|_{\infty} \ell \left[f \left(1 - \sum_{i=1}^{N} h_i \right) \right] \\
\leq \| f \|_{\infty} \mu \left(\bigcup_{i=1}^{N} U_i \setminus K_i \right) \\
= \| f \|_{\infty} \sum_{i=1}^{N} \mu (U_i \setminus K_i) \\
< \frac{\epsilon}{2} \| f \|_{\infty}.
\]

In addition,
\[
\ell \left[f \left(\sum_{i=1}^{N} h_i \right) \right] = \sum_{i=1}^{N} \ell (h_i f).
\]

We sandwich the latter by
\[
\sum_{i=1}^{N} t_{i-1} \mu (U_i) - \frac{\epsilon}{2N} \leq \sum_{i=1}^{N} \ell (h_i f) \leq \sum_{i=1}^{N} t_i \mu (U_i) \\
\sum_{i=1}^{N} t_{i-1} \mu (U_i) - \| f \|_{\infty} \frac{\epsilon}{2} \leq \sum_{i=1}^{N} \ell (h_i f) \leq \sum_{i=1}^{N} t_i \mu (U_i)
\]

Putting everything together, we obtain
\[
\sum_{i=1}^{N} t_{i-1} \mu (U_i) - \| f \|_{\infty} \frac{\epsilon}{2} \leq \ell (f) \leq \sum_{i=1}^{N} t_i \mu (U_i) + \frac{\epsilon}{2} \| f \|_{\infty}.
\]

But we also know that
\[
\sum_{i=1}^{N} t_{i-1} \mu (U_i) \leq \int f \, d\mu = \sum_{i=1}^{N} \int_{U_i} f \, d\mu \leq \sum_{i=1}^{N} t_i \mu (U_i).
\]

Therefore
\[
\left| \ell (f) - \int f \, d\mu \right| \leq \sum_{i=1}^{N} t_i \mu (U_i) - \sum_{i=1}^{N} t_{i-1} \mu (U_i) + \frac{\epsilon}{2} \| f \|_{\infty} \\
\leq \sum_{i=1}^{N} (t_i - t_{i-1}) \mu (U_i) + \frac{\epsilon}{2} \| f \|_{\infty} \\
\leq \epsilon \mu (X) + \frac{\epsilon}{2} \| f \|_{\infty}.
\]
Taking $\epsilon \to 0$, the result follows; we have computed $\ell(f)$.

Lastly, we show uniqueness of μ. So suppose that μ, ν are finite regular Borel measures such that $\int f \, d\mu = \int f \, d\nu$ for all $f \in C(X)$. It suffices to show that $\mu(O) = \nu(O)$ for all open O, by regularity.

Given $\epsilon > 0$, there is a compact $K \subset O$ such that $\mu(O \setminus K) < \epsilon$ and $\nu(O \setminus K) < \epsilon$. Take $h \in C(X)$ such that $\chi_K \leq h \leq \chi_O$. Then

$$
\mu(K) \leq \int h \, d\mu \leq \mu(O) \implies \mu(O) - \epsilon \leq \int h \, d\mu \leq \mu(O),
$$

and similarly for ν; consequently $|\mu(O) - \nu(O)| \leq \epsilon$, and we are done. \qed
Theorem 14.1 (Riesz Representation Theorem). Let X be a compact metric space, let $\ell : C(X) \to \mathbb{R}$ be a bounded linear operator. Then there is a finite signed Borel measure μ such that

$$\ell(f) = \int f \, d\mu, \quad \forall f \in C(X).$$

Moreover, $\|\ell\| = \|\mu\| = \|\mu\|(X)$ and $(C(X))^* = M(X)$, the space of finite signed Borel measures.

Proposition 14.2. Let X be a compact metric space, let ℓ be a bounded linear functional on $C(X)$. Then there are positive linear functionals ℓ^+, ℓ^- such that

$$\ell = \ell^+ - \ell^-, \quad \ell = \|\ell^+\| + \|\ell^-\| = \ell^+(1) + \ell^-(1).$$

Proof of theorem using the proposition. If ℓ is a positive linear functional, then there is a positive finite measure μ such that

$$\int f \, d\mu = \ell(f) \quad 0 \leq f \leq 1, f \in C(X),$$

and $\|\ell\| = \ell(1) = \mu(X)$.

Then we get μ^+ finite Borel measures with $\ell^+(f) = \int f \, d\mu^+$. Hence

$$\ell(f) = \ell^+(f) - \ell^-(f) = \int f \, d\mu^+ - \int f \, d\mu^- = \int f \, d(\mu^+ - \mu^-).$$

Set $\mu = \mu^+ - \mu^-$; then writing $|\mu| = \mu^+ + \mu^-$, we find

$$|\mu|(X) = \mu^+(X) + \mu^-(X) = \|\ell^+\| + \|\ell^-\| = \|\ell\|,$$

as desired.

For uniqueness, observe that if there are μ, ν satisfying the hypotheses, then

$$\int f \, d\mu^+ - \int f \, d\mu^- = \int f \, d\nu^+ - \int f \, d\nu^- \implies \int f(d\mu^+ + d\nu^-) = \int f(d\mu^- + d\nu^+).$$

Thus $d\mu^+ + d\nu^- = d\mu^- + d\nu^+$, so $\mu^+ - \mu^- = \nu^+ - \nu^-$ and we’re done. so that
Proof of the proposition. Consider \(f \in C(X), f \geq 0 \). Set
\[
\ell^+(f) = \sup\{\ell(\phi) : \phi \in C(X), \quad 0 \leq \phi \leq f\}.
\]

Notice that \(\ell^+(f) \geq 0 \). Then taking \(\phi = f \) yields \(\ell(f) \leq \ell^+(f) \). Also \(\ell^+(f) \leq \|\ell\|\|f\| \), since for any \(\phi \leq f \) we have
\[
|\ell(\phi)| \leq \|\ell\|\|\phi\| \leq \|\ell\|\|f\|.
\]

Take \(\alpha \in \mathbb{R}_{\geq 0} \). It is clear that \(\ell^+(\alpha f) = \alpha \ell^+(f) \).

Claim 14.3. For \(f, g \in C(X) \) with \(f, g \geq 0 \),
\[
\ell^+(f + g) = \ell^+(f) + \ell^+(g).
\]

Proof. For any \(\epsilon > 0 \), there are \(\phi, \psi \in C(X) \) with \(0 \leq \phi \leq f \) and \(0 \leq \psi \leq g \) and
\[
\ell(\phi) \leq \ell^+(f) \leq \ell(\phi) + \epsilon, \quad \ell(\psi) \leq \ell^+(g) \leq \ell(\psi) + \epsilon.
\]

Thus
\[
\ell^+(f) + \ell^+(g) \leq \ell(\phi) + \ell(\psi) + 2\epsilon = \ell^+(f + g) + 2\epsilon.
\]

Hence \(\ell^+(f) + \ell^+(g) \leq \ell^+(f + g) \).

For the other inequality, take \(0 \leq \phi \leq f + g \). Set \(\phi_1 = \min(\phi, f) \), which is continuous with \(0 \leq \phi_1 \leq f \). Then choose \(\phi_2 = \phi - \phi_1 \), whereupon \(0 \leq \phi_2 \leq g \) (just check both cases in the minimum). Then
\[
\ell(\phi_1) + \ell(\phi_2) = \ell(\phi) \leq \ell^+(f) + \ell^+(g).
\]

Taking the suprema over \(\phi_1, \phi_2 \) yields \(\ell^+(f + g) \leq \ell^+(f) + \ell^+(g) \). \(\square \)

Now we extend \(\ell^+ \) to be a linear functional on \(C(X) \). For \(f \in C(X) \), decompose \(f = f^+ - f^- \) and set \(\ell^+(f) = \ell^+(f^+) - \ell^+(f^-) \). We need to show that this is “well-defined”. In other words,

Claim 14.4. If \(f = f_1 - f_2 = h_1 - h_2 \) for \(f, h \geq 0 \in C(X) \), then \(\ell^+(f_1) - \ell^+(f_2) = \ell^+(h_1) - \ell^+(h_2) \).

Proof. Since \(f_1 + h_2 = f_2 + h_1 \geq 0 \), \(\ell^+(f_1) + \ell^+(h_2) = \ell^+(f_2) + \ell^+(h_1) \) and the result follows. \(\square \)

Claim 14.5. \(\ell^+ \) is linear on \(C(X) \).

Proof. Just expand; \(\ell^+(f + g) = \ell^+((f + g)^+) - \ell^+((f + g)^-) \). Now write out both sides and you get two decompositions for \(f + g \). \(\square \)
Lastly, we check that for $\alpha < 0$ we have $\ell^+(\alpha f) = -\alpha(\ell^+(f^-) - \ell^+(f^+)) = \alpha\ell^+(f)$ as required. Moreover,

$$\|\ell^+(f)\| \leq \ell^+(f^+) + \ell^+(f^-)$$
$$= \ell^+(\|f\|)$$
$$\leq \|\ell^+\|\|f\|$$
$$\leq \|\ell\|\|f\|,$$

so it is a bounded linear operator (we don’t need this yet).

Define $\ell^- = \ell^+ - \ell$. Taking $\phi \geq 0$, we get $\ell^-(\phi) = \ell^+(\phi) - \ell(\phi) \geq 0$. Then $\|\ell\| \leq \|\ell^+\| + \|\ell^-\|$ gives one direction.

For $0 \leq \phi \leq 1$, it follows that $|2\phi - 1| \leq 1$. Thus $\ell(2\phi - 1) = 2\ell(\phi) - \ell(1)$. Taking the supremum yields $\|\ell\| \geq 2\|\ell^+\| - \ell(1) = \ell^+(1)$. Hence $\|\ell\| \geq \|\ell^+\| + \|\ell^-\|$ as desired. \qed
Counterexample to homework problem: \(f_n \in L^p(\mathbb{R}) \) and \(\sup \| f_n \|_p < \infty \), \(\lim \int f_n = \lim \int f \), then \(f_n \to f \) weakly in \(L^p \).

It fails when \(p = 1 \); take \(f_n = \chi_{[n, n+1]} \).

Radon

Definition 15.1. A Borel regular measure \(\mu \) on \(\mathbb{R}^d \) is said to be **Radon** if for each compact \(K \subset \mathbb{R}^d \), \(\mu(K) < \infty \).

Where did we use compactness? Well, we needed to get the partition of unity to be finite.

Corollary 15.2 (Riesz Representation Theorem). If \(\ell \) is a positive linear functional on \(C_c(\mathbb{R}^d) \), there exists a unique measure \(\mu \) such that

\[
\ell(f) = \int f \, d\mu, \quad f \in C_c(\mathbb{R}^d).
\]

Proof. Write \(\mathbb{R}^d = \bigcup_{k=1}^{\infty} B(0, k) \). We need to do some smoothing to get it to work (because just using characteristic functions wouldn’t be smooth enough).

Choose functions \(\xi_k \in C_c(\mathbb{R}^d) \) with \(\chi_{B_k} \leq \xi_k \leq \chi_{B_{2k}} \), such that \(\xi_k(x) = \xi_1 \left(\frac{x}{2^k} \right) \). Define \(\ell_k : C(\bar{B}_{2k}) \to \mathbb{R} \) by \(f \mapsto \ell_k(f) = \ell(f \xi_k) \). Then \(\ell_k \) is positive, since if \(f \geq 0 \) then so is \(f \xi_k \).

By Riesz Representation Theorem, there is a measure \(\mu_k \) such that \(\ell_k(f) = \int f \, d\mu_k \), for \(f \in C(\bar{B}_{2k}) \). Observe that \(\mu_k = 0 \) outside of \(\bar{B}_{2k} \).

Now consider any \(f \in C_c(\mathbb{R}^d) \). There is a \(j_0 \) such that \(\text{supp} \ f \subset B(0, j) \), for \(j \geq j_0 \). Then \(\ell(f) = \ell_{j_0}(f) \). On the other hand, it is \(\ell_j(f) \). Hence by uniqueness in Riesz Representation, it follows \(\mu = \mu_j \).

(Her proof: Assume they are not the same; then take a borel set on which one is larger than the other. Use Urysohn’s Lemma to complete.)

Let \(\mu = \mu_j \) on \(B_j \). Then we take our set \(E \), split it up, and add.

Compact Operators

We want to study operators that preserve some nice features from \(\mathbb{R}^k \), even in infinite dimensional spaces. All our previous definitions of “nice” operators included the identity map as an example. This is the first time that the identity isn’t nice enough.
Definition 15.3. Let X, Y be Banach spaces, and $T : X \to Y$ a linear operator. T is **compact** when for every bounded sequence $\{u_k\} \subset X$, the set $\{Tu_k\} \subset Y$ is precompact.

Unrolling the definition, this means that there is a subsequence $\{u_{n_k}\}$ such that $\{Tu_{n_k}\}$ converges in Y.

Claim 15.4. T is continuous.

Proof. Let B be the unit ball. Then TB is precompact, so \overline{TB} is compact. Since we’re in a metric space, \overline{TB} is therefore bounded. Hence TB is bounded as well, and consequently T is a bounded linear operator. □

Let \mathcal{H} be an infinite dimensional Hilbert space. Then Id is not compact (since unit ball is not compact). But if $T : \mathcal{H} \to \mathbb{R}^d$ is any bounded linear map, then it is bounded since the unit ball maps into a ball. (We could have worked with Banach instead of Hilbert, but we need Hilbert later on.)

Definition 15.5. When T is a linear map into a finite dimensional space, we say T is of **finite rank**.

Proposition 15.6. Let $T : \mathcal{H} \to \mathcal{H}$ be a bounded linear operator, and \mathcal{H} is separable.

1) If $S : \mathcal{H} \to \mathcal{H}$ is compact, then ST and TS are compact.

2) If $\{T_n\}$ is a family of compact operators and $\|T_n - T\| \to 0$, then T is compact.

3) If T is compact, then there are a sequence of finite rank operators T_n such that $\|T_n - T\| \to 0$.

4) $T : \mathcal{H} \to \mathcal{H}$ is compact if and only if $T^* : \mathcal{H} \to \mathcal{H}$ is compact.
Let $T: \mathcal{H} \to \mathcal{H}$ be a bounded linear operator. Take \mathcal{H} to be a separable Hilbert space (we really need separability, it’s not just ornamental).

Claim 16.1 (Property 1). If $S: \mathcal{H} \to \mathcal{H}$ is compact, then so are ST and TS.

For ST. Let $\{f_n\} \subset \mathcal{H}$ with $\text{sup}_n \|f_n\| < \infty$. Since T is bounded, $\text{sup}_n \|Tf_n\| < \infty$. Hence there are $\{f_{nk}\} \subset \{f_n\}$ such that $\{STf_{nk}\}$ converges. □

For TS. As before consider $\{f_n\} \subset \mathcal{H}$. Since S is compact, there are $\{f_{nj}\} \subset \{f_n\}$ such that $\{Sf_{nj}\}$ converges. Since T is continuous, $\{TSf_{nj}\}$ converges. □

Claim 16.2 (Property 2). If $T_n: \mathcal{H} \to \mathcal{H}$ is compact and $\|T_n - T\| \to 0$, then T is compact.

Proof. Let $\{f_n\} \subset \mathcal{H}$ with $\text{sup}_n \|f_n\| < \infty$. Then there is a subsequence $\{f_{nk}\}$ such that $\{Tf_{nk}\}$ converges. Now there is a subsequence $\{f_{nk}'\} \subset \{f_{nk}\}$ such that $\{Tf_{nk}'\}$ converges. Continuing on, we obtain $\{f_{nk}\} \subset \{f_{nk}'\}$ such that

$$\left\{Tf_{nk}\right\} \text{ converges } \forall l \leq j.$$

Let $f_{nk} = f_{nk}'$. We claim that $\{Tf_{nk}\}$ converges.

Fix $\epsilon > 0$. There is an m_0 such that $\|T_n - T\| < \epsilon$ for $m \geq m_0$. Write $M = \text{sup} \|f_n\| < \infty$. Fix m; since $\{T_mf_{nj}\}$ is Cauchy,

$$\|Tf_{nk} - Tf_{nj}\| \leq \|Tf_{nk} - T_mf_{nj}\| + \|T_mf_{nk} - T_mf_{nj}\| + \|T_mf_{nk} - Tf_{nj}\|$$

$$\leq \|T - T_m\left(\|f_{nk}\| + \|f_{nj}\|\right) + \|T_mf_{nk} - T_mf_{nj}\|$$

$$< 2\epsilon M + \epsilon.$$ □

Claim 16.3 (Property 3). If T is compact, then there are operators $\{T_n\}$ of finite rank such that $\|T_n - T\| \to 0$ as $n \to \infty$.

Proof. Let $\{e_k\}$ be a basis for \mathcal{H}. Let P_n be projection onto $\langle e_k \rangle_{k \leq n}$, and Q_n the projection onto $\langle e_k \rangle_{k > n}$. Then $T_n = P_nT$ is of finite rank, and $1 = P_n + Q_n$. We claim that $\|T_n - T\| \to 0$. Indeed, consider $0 \neq f \in \mathcal{H}$. Then

$$\|T_n f - Tf\|^2 = \|Q_n Tf\|^2$$

$$= \sum_{k=n+1}^{\infty} (Tf, e_k)^2$$

$$\leq \sum_{k=n}^{\infty} (Tf, e_k)^2.$$
Hence for all \(f \in \mathcal{H} \),
\[
\|Q_n T f\| \leq \|Q_{n-1} T f\| \leq \|Q_{n-1} T\| \|f\|,
\]
whereupon \(0 \leq \|Q_n T\| \leq \|Q_{n-1} T\| \). Hence we have a decreasing positive sequence, which must converge; let \(c = \lim_n \|Q_n T\| \).

Suppose for contradiction that \(c > 0 \). Then there is a sequence \(\{f_n\} \) with \(\|f_n\| = 1 \) such that \(\|Q_n T f_n\| \geq c/2 \). By compactness, there is a subsequence \(\{T f_{n_k}\} \) that converges to \(g \in \mathcal{H} \). It follows that
\[
\|Q_{n_k} T f_{n_k} - Q_{n_k} g\| \leq \|Q_{n_k}\| \|T f_{n_k} - g\| \leq \|T f_{n_k} - g\|,
\]
which tends to 0. Hence there is a \(k_0 \) such that \(\|Q_{n_k} g\| \geq c/4 \), for all \(k \geq k_0 \). This is impossible, since
\[
\|Q_{n_k} g\|^2 = \sum_{l \geq n_k+1} (g, e_l)^2 \to 0.
\]

\[\square\]

Claim 16.4 (Property 4). \(T: \mathcal{H} \to \mathcal{H} \) is compact precisely when \(T^*: \mathcal{H} \to \mathcal{H} \) is compact.

Proof. Recall that \((T f, g) = (f, T^* g) \). Since \(T \) is compact, from the last claim \(\|P_n T - T\| \to 0 \). But
\[
\|P_n T - T\| = \|P_n T - T^*\| = \|T^* P_n - T^*\| = \|T^* P_n - T^*\|.
\]
However, \(T^* P_n \) is compact. Thus \(T^* \) is a limit of compact operators, and is therefore compact. \[\square\]

Examples from PDE

Studying compact operators is super important in PDE. Consider \(f \in L^2(\mathbb{R}^d) \), and a measurable kernel \(K(x, y) \) on \(\mathbb{R}^d \times \mathbb{R}^d \). Define the integral operator
\[
T f(x) = \int K(x, y) f(y) \, dy, \quad (\star)
\]
Consider \(\Omega \subset C^2 \), and \(\Omega \subset \mathbb{R}^n \). Consider the Laplacian \(\nabla = \sum_i \frac{\partial^2}{\partial x_i^2} \). You want to solve the PDE \(\nabla u = 0 \), subject to either the Dirichlet boundary condition \(u = f \) on \(\partial \Omega \), or the Neumann boundary condition \(\frac{\partial u}{\partial n} = g \) on \(\partial \Omega \).

It turns out that \(\mu_l(x) = f(x) + T f(x) \), in other words \(I + T \).

To know if you can solve this function in \(L^2 \), you need to prove that \(T f(x) \) is bounded in \(L^2 \). You also care if it is invertible. Once it’s compact, you have beautiful properies about the solution.

Definition 16.5. When \(K \in L^2(\mathbb{R}^d \times \mathbb{R}^d) \), the operator in \(\star \) is a Hilbert-Schmidt operator.
Proposition 17.1. Let T be a Hilbert-Schmidt operator

$$Tf(x) = \int K(x,y)f(y) \, dy, \quad f \in L^2(\mathbb{R}^d), K \in L^2(\mathbb{R}^d \times \mathbb{R}^d).$$

1. If $f \in L^2(\mathbb{R}^d)$ for a.e. $x \in \mathbb{R}^d$, then

$$y \mapsto K(x,y)f(y)$$

is integrable.

2. The operator $T: L^2(\mathbb{R}^d) \to L^2(\mathbb{R}^d)$ is bounded, with

$$\|T\| \leq \|K\|_{L^2(\mathbb{R}^d \times \mathbb{R}^d)}.$$

Proof. By Fubini,

$$\int_{\mathbb{R}^d} \left(\int_{\mathbb{R}^d} K(x,y)^2 \, dy \right) \, dx < \infty.$$

Then for a.e. $x \in \mathbb{R}^d$,

$$\int K(x,y)^2 \, dy < \infty.$$

By Cauchy,

$$\int_{\mathbb{R}^d} |K(x,y)||f(y)| \, dy \leq \left(\int_{\mathbb{R}^d} |K(x,y)|^2 \, dy \right)^{1/2} \left(\int_{\mathbb{R}^d} |f(y)|^2 \, dy \right)^{1/2}.$$

It follows that

$$\int_{\mathbb{R}^d} |Tf(x)|^2 \, dx \leq \int_{\mathbb{R}^d} \left(\int_{\mathbb{R}^d} |K(x,y)|^2 \, dy \int_{\mathbb{R}^d} |f(y)|^2 \, dy \right) \, dx$$

$$= \|K\|_{L^2(\mathbb{R}^d \times \mathbb{R}^d)}^2 \|f\|_{L^2(\mathbb{R}^d)}^2.$$

To show that T is compact, we want to write it as a limit of finite rank operators. Thus we need to project it somehow onto a nice orthonormal basis for the product space $L^2(\mathbb{R}^d \times \mathbb{R}^d)$. So start with $\{\phi_k\}$ an orthonormal basis on $L^2(\mathbb{R}^d)$. Take the functions $\{\phi_k(x)\phi_l(y)\}_{k,l}$; in the next homework, we’ll prove that this is an orthonormal basis for $L^2(\mathbb{R}^d \times \mathbb{R}^d)$.

Thus we may write

$$K(x,y) = \sum_{k,l} a_{kl} \phi_k(x)\phi_l(y), \quad \sum_{k,l} |a_{kl}|^2 < \infty.$$
Define $K_n(x, y) = \sum_{k,l=1}^{n} a_{kl} \phi_k(x) \phi_l(y)$, and set

$$T_n f(x) = \int K_n(x, y) f(y) \, dy$$

$$= \sum_{k=1}^{n} \left[\int_{\mathbb{R}^d} \left(\sum_{l=1}^{n} a_{kl} \phi_l(y) f(y) \right) \, dy \right] \phi_k(x).$$

Consequently $T_n f$ has finite rank.

Claim 17.2. $\|T_n - T\| \to 0$

Proof. Compute the tail

$$K - K_n = \sum_{\max(k,l) \geq n+1} a_{kl} \phi_k(x) \phi_l(y).$$

We can express its norm $\|K - K_n\|^2$ as a tail; indeed,

$$\sum_{k,l=1}^{\infty} |a_{kl}|^2 = \sum_{k=1}^{\infty} \left(\sum_{l=1}^{\infty} |a_{kl}|^2 \right) < \infty,$$

$$\implies \sum_{k=n+1}^{\infty} \sum_{l=1}^{\infty} |a_{kl}|^2 \to 0, \quad n \to \infty.$$

Thus $\|K - K_n\|^2 \to 0$. Since $\|T - T_n\| \leq \|K - K_n\|_{L^2(\mathbb{R}^d \times \mathbb{R}^d)}$, the claim follows.

Now since limits of compact operators are compact, the result follows.

Theorem 17.3. Let $K: \mathcal{H} \to \mathcal{H}$ be a compact linear operator.

1. Ker$(I - K)$ is finite dimensional (and a priori closed)
2. Im$(I - K)$ is closed
3. Im$(I - K) = \text{Ker}(I - K^*)^\perp$
4. Ker$(I - K) = \{0\} \iff \text{Im}(I - K) = \mathcal{H}$
5. $\dim \text{Ker}(I - K) = \dim \text{Ker}(I - K^*)$

We have to make a leap of faith; lots of PDE operators can be written as $I - K$. So we will rewrite the theorem in different terms.
Fredholm Alternative

Your PDE question usually reduces to: given \(f \in L^2(\mathbb{R}^d) \), can you find \(u \in L^2(\mathbb{R}^d) \) such that \(u - Ku = f \)? The answer is yes if the kernel is 0.

Theorem 17.4. Let \(K \) be compact on \(\mathcal{H} = L^2(\mathbb{R}^d) \). Either:

1. For each \(f \in \mathcal{H} \), there is a unique \(u \in \mathcal{H} \) such that \(u - Ku = f \)
2. The space of homogeneous solutions to \(u - Ku = 0 \) is finite dimensional

Let’s assume we’re in the case with non-trivial solutions; then the question asks, for which \(f \) can you solve the PDE? If \(f \) is in the image of the complement of the transpose, you can solve it by (3). So functional analysis informs PDE.

Proof. 1. Assume \(\text{Ker}(I - K) \) is not finite. Since it is a Hilbert space, there is an orthonormal basis \(\{u_k\} \). Then \(\|u_k - u_j\|^2 = 2 \), so it has no convergent subsequence. Since \(K \) is compact, there must be a convergent subsequence \(Ku_{n_k} = u_{n_k} \) converges.

\(\Box \)
Theorem 18.1. Let $K : H \to H$ be a compact linear operator.

1. Ker($I - K$) is finite dimensional (and a priori closed)
2. Im($I - K$) is closed
3. Im($I - K$) = Ker($I - K^*$)$^\perp$
4. Ker($I - K$) = 0 \iff Im($I - K$) = H
5. dim Ker($I - K$) = dim Ker($I - K^*$)

Proof. 2. Take $v_k \in$ Im($I - K$), with $v_k \to v$. Then there are w_k such that $w_k - Kw_k = v_k$. Since $H = Ker(I - K) \oplus Ker(I - K)^\perp$, we can write $w_k = \tilde{w}_k + u_k$ for $\tilde{w}_k \in$ Ker($I - K$) and $u_k \in$ Ker($I - K$)$^\perp$. Then $v_k = u_k - Ku_k$.

Claim 18.2.
\[\|u - Ku\| \geq \gamma\|u\|, \quad \forall u \in$ Ker($I - K$)$^\perp \]

for some $\gamma > 0$.

Proof of claim. Assume to the contrary that for each k, there is some $u_k \in$ Ker($I - K$)$^\perp$ such that
\[\frac{\|u_k\|}{k} > \|u_k - Ku_k\|. \]
Taking $v_k = \frac{u_k}{\|u_k\|}$, we find that $\|v_k - Kv_k\| < \frac{1}{k}$. Since $\{v_k\}$ is bounded, there is a convergent subsequence $\{v_{n_k}\} \to v$. By continuity of K,
\[v - Kv = \lim_{k} (v_{n_k} - Kv_{n_k}) \]
\[= 0. \]
Thus $v \in$ Ker($I - K$). Since we started with $v_{n_k} \in$ Ker($I - K$)$^\perp$ and this set is closed, $v_{n_k} \in$ Ker($I - K$)$^\perp$ as well. Consequently $v = 0$, which contradicts continuity of $\|\cdot\|$. \hfill \square

Applying the claim, $\|v_k\| \geq \gamma\|u_k\|$. Since $\{v_k\}$ converges, it is bounded and hence $\{u_k\}$ is bounded. Since K is compact, Ku_{n_k} converges for some subsequence:
\[v_{n_k} + Ku_{n_k} = u_{n_k} \to u. \]
Then by continuity of K, $v_{n_k} \to u - Ku = v \in$ Im($I - K$) and we’re done.
3. If $T: \mathcal{H} \to \mathcal{H}$ is bounded and linear, then $\text{Im}(T) = \text{Ker}(T^*)^\perp$. Indeed, suppose that $v \in \text{Ker}(T^*)$ and $u \in \text{Im}(T)$. Write $u = Tw$; then

$$
\langle u, v \rangle = \langle Tw, v \rangle = \langle w, T^*v \rangle = 0.
$$

Hence $\text{Im}(T) \subseteq \text{Ker}(T^*)^\perp$. But the latter set is closed, so $\overline{\text{Im}(T)} \subseteq \text{Ker}(T^*)^\perp$, as desired.

For the other direction, consider $v \in \overline{\text{Im}(T)}^\perp$. Consider any $u \in \mathcal{H}$. Then there are $v_n \in \text{Im}(T)^\perp$ such that $v_n \to v$. Consequently

$$
0 = \langle Tu, v_n \rangle \to \langle Tu, v \rangle.
$$

Thus $\langle u, T^*v \rangle = 0$ for every $v \in \overline{\text{Im}(T)}^\perp$. Hence $T^*v = 0$, whereupon $v \in \text{Ker} T^*$. Hence $\overline{\text{Im}(T)}^\perp \subseteq \text{Ker} T^*$, whereupon $\overline{\text{Im}(T)} \supseteq (\text{Ker} T^*)^\perp$.

4. \(\Rightarrow\) Assume that $\text{Ker}(I - K) = 0$, and that $\mathcal{H}_1 = \text{Im}(I - K) \neq \mathcal{H}$. Since \mathcal{H}_1 is closed (by 2), it’s a sub-Hilbert space. Then there is some $u_0 \in \mathcal{H}$ with $\|u_0\| = 1$ and $u_0 \notin \mathcal{H}_1$; in particular, $u_0 \notin \mathcal{H}_1$.

Consider the element $u_0 - Ku_0 \in \mathcal{H}_1$. We claim that $u_0 - Ku_0 \notin (I - K)\mathcal{H}_1 = \mathcal{H}_2$. Indeed, if $u_0 - Ku_0 = (I - K)h$ for some $h \in \mathcal{H}_1$, then $u_0 - h \in \text{Ker}(I - K)$. Hence $u_0 = h \in \mathcal{H}_1 \cap \mathcal{H}_1^\perp$, whereupon $u_0 = 0$ (contradiction).

It follows that $\mathcal{H}_2 \notin \mathcal{H}_1 \notin \mathcal{H} = \mathcal{H}_0$. Continuing inductively, we obtain $u_i \in \mathcal{H}_i$ such that $u_i \in \mathcal{H}_i^\perp$ and $\|u_i\| = 1$, where

$$
\mathcal{H}_k = (I - K)^k \mathcal{H} \notin \mathcal{H}_{k-1}.
$$

If $k > 1$, then $\mathcal{H}_k \subseteq \mathcal{H}_{l+1}$ so $\mathcal{H}_{k+1}^\perp \subseteq \mathcal{H}_{l+1}^\perp$. Since $u_1 \notin \mathcal{H}_1$, it follows that $u_1 \in \mathcal{H}_1^\perp$. But then

$$
K(u_k - u_1) = (K - I)u_k + (I - K)u_1 + u_k - u_1
$$

$$
\in (\mathcal{H}_{k+1}) + (\mathcal{H}_{l+1}) + \mathcal{H}_{l+1} + \mathcal{H}_{l+1}^\perp.
$$

Therefore $\|K(u_k - u_1)\|^2 = \|u_1\|^2 + \|u_k\|^2 \geq 1$. Hence we have constructed a sequence such that $\{Ku_k\}$ has no convergent subsequence, contradicting compactness of K.

\(\Leftarrow\) Suppose $\text{Ker}(I - K^*) = 0$. Then since $(K^*)^* = K$ and K^* is compact, it follows from the previous half of 4 that $\text{Im}(I - K^*) = \mathcal{H}$. Hence $(\text{Ker}(I - (K^*)^*))^\perp = \mathcal{H}$, so that $\text{Ker}(I - K) = 0$.

\(\square\)
Recall part 5 from last time:

\[\dim \ker (I - K) = \dim \ker (I - K^*) \]

We only need to show one inequality, then the other follows by interchanging the roles of \(K, K^* \). We also saw that \(\ker (I - K^*) = \im (I - K)^\perp \).

Proof sketch. Assume to the contrary that \(\dim \ker (I - K) < \dim \im (I - K)^\perp \). Then there is an operator \(A : \ker (I - K) \to \im (I - K)^\perp \) that is injective; but by dimension, it can’t be surjective. Then extend \(A = 0 \) on \(\ker (I - K)^\perp \). The contradiction arises since the operator \(I - (K + A) \) (which is a sum of compact operators) behaves incorrectly. \(\square \)

Spectrum of a compact operator

Consider \(T \in \mathcal{L}(\mathcal{H}, \mathcal{H}) \).

Definition 19.1.
1. The **resolvent** of \(T \) is
 \[\rho(T) = \{ \eta \in \mathbb{R} \text{ (or } \mathbb{C} \text{): } T - \eta I \text{ is bijective} \} \]

2. The **spectrum** of \(T \) is
 \[\sigma(T) = \rho(T)^c \quad (\text{either in } \mathbb{R} \text{ or } \mathbb{C}) \]

3. \(\eta \in \mathbb{C} \) is an **eigenvalue** for \(T \) if \(\ker (T - \eta I) \neq 0 \). This means there is an eigenvector/eigenfunction \(w \neq 0 \) such that \(Tw = \eta w \).

4. The **point spectrum** is
 \[\sigma_p(T) = \{ \eta \in \mathbb{C} : \eta \text{ is an eigenvalue} \} \]

Let \(\mathcal{H} \) be an infinite dimensional Hilbert space (this is not a linear algebra problem), and \(K : \mathcal{H} \to \mathcal{H} \) is compact.

Theorem 19.2.
1. \(0 \in \sigma(K) \)

2. \(\sigma(K) \setminus \{0\} = \sigma_p(K) \setminus \{0\} \)

3. Either \(\sigma(K) \setminus \{0\} \) is finite, or it converges to 0.

Remark. Consider \(K \) bounded, and \(\{\lambda_n\} \subset \mathbb{C} \) such that there are \(f_n \in \mathcal{H} \) such that \(\| f_n \| = 1 \) and \(Kf_n = \lambda_n f_n \). Then \(\lambda_n \) is bounded.
Proof. 1. If $0 \not\in \sigma(K)$ and K is bijective, then K^{-1} exists and is bounded (by open mapping). Hence we may write $I = K \circ K^{-1}$; the first is compact, and the second is bounded; thus I is compact, contradiction.

2. We show the contrapositive; consider $\eta \neq 0$ such that $\eta \not\in \sigma_p(K)$. Then $\ker(K - \eta I) = 0$. Since $\eta \neq 0$, we can divide and apply the Fredholm Alternative to

$$\ker \left(I - \frac{1}{\eta} K \right) = 0.$$

Consequently $\text{Im}(K - \eta I) = \mathcal{H}$. It follows that $\eta \not\in \sigma(K)$.

3. Assume that $\sigma(K)$ is not finite. Let $\{\eta_k\} \subset \sigma(K) \setminus \{0\}$ be distinct. Since $\{\eta_k\}$ is bounded, it converges to η. We claim that $\eta = 0$; then the result follows (by the infinite pigeonhole principle).

For each k, choose ω_k such that $\|\omega_k\| = 1$ and $K\omega_k = \eta_k \omega_k$. Set $H_k = \langle \omega_1, \ldots, \omega_l \rangle$. We claim that $\{\omega_k\}$ is linearly independent.

Write $\omega_k = \sum_{j=1}^{k-1} \alpha_j \omega_j$ and proceed inductively. Then

$$K\omega_k = \eta_k \omega_k = \sum_{j=1}^{k-1} \alpha_j \eta_j \omega_j = \eta_k \sum_{j=1}^{k-1} \alpha_j \omega_j = \sum_{j=1}^{k-1} \alpha_j \eta_j \omega_j.$$

Hence by linear independence of $\{\omega_i\}_{i=1}^{k-1}$, it follows that each $\alpha_j = 0$ so they are linearly independent.

Thus $H_k \subsetneq H_{k+1}$, and $(K - \eta_k I)H_k \subset H_{k-1} \subset H_k$. So for $k > l$, we get $H_{l-1} \subset H_l \subset H_{k-1} \subset H_k$. She wrote

$$H_k = H_{k-1} \oplus H_{k-1}^\perp.$$

Let $u_k \in H_{k-1}^\perp \cap H_k$ with $\|u_k\| = 1$. Then

$$\left\| \frac{K\omega_k}{\eta_k} - \frac{K u_l}{\eta_l} \right\|^2 = \left\| (K - \eta_k I)u_k - (K - \eta_l I)u_l + u_k - u_l \right\|^2 \geq 1,$$

since $u_k \in H_{k-1}^\perp$ (and the rest is in H_{k-1}). Hence we’ve shown that $\{K(u_k)/\eta_k\}$ does not have a convergent subsequence. This contradicts compactness of K (since $\{u_k/\eta_k\}$ is bounded).

\[\square\]

Definition 19.3. An operator T is **symmetric** if $T = T^\ast$.

Theorem 19.4 (Spectral Theorem). If $T \neq 0$ is compact and symmetric on \mathcal{H}, then T can be diagonalized.
Concretely, this means that there is a basis \(\{ \phi_k \} \) of eigenfunctions \(T \) such that

\[
T\phi_k = \lambda_k \phi_k, \quad \lambda_k \in \mathbb{R}, \quad \lambda_k \to 0.
\]

We make the following claims:

1. Every eigenvalue is real (only needs symmetric, not compact)
2. If \(\phi_i, \phi_j \) are eigenfunctions corresponding to different eigenvalues, then \(\langle \phi_1, \phi_2 \rangle = 0 \).
3. Either \(\|T\| \) or \(-\|T\| \) is an eigenvalue for \(T \).
4. \(\mathcal{H} = \{ \{ \phi_k \} \} \)
Theorem 20.1 (Spectral Theorem). If $T : \mathcal{H} \to \mathcal{H}$ is compact and symmetric ($T = T^*$), then T can be diagonalized.

Claim 20.2. All eigenvalues of T are real.

Proof. Assume $Tu = \lambda u$ with $\|u\| = 1$. Then

$$\lambda - \bar{\lambda} = (Tu, u) - (u, Tu) = (Tu, u) - (u, T^*u) = 0.$$

Hence $\lambda \in \mathbb{R}$. \hfill \Box

Claim 20.3. If u_1, u_2 correspond to different eigenvalues λ_1, λ_2 then $(u_1, u_2) = 0$.

Proof.

$$(\lambda_1 - \lambda_2)(u_1, u_2) = (Tu_1, u_2) - (u_1, Tu_2)$$

$$= (Tu_1, u_2) - (u_1, T^*u_2)$$

$$= (Tu_1, u_2) - (Tu_1, u_2) = 0.$$

Thus $(u_1, u_2) = 0$. \hfill \Box

Claim 20.4. Either $\|T\|$ or $-\|T\|$ is an eigenvalue for T.

The reason why we claim 3 is so that we know we have an eigenvalue in claim 4. Notice that we’re working over the complex, but T is symmetric. Thus $(Tf, f) \in \mathbb{R}$ for all f.

Proof of claim. Write

$$\|T\| = \sup\{||Tf, f|| : \|f\| = 1\}$$

$$= \begin{cases}
\sup\{(Tf, f) : \|f\| = 1\} & \text{or} \\
\sup\{-Tf, f) : \|f\| = 1\}
\end{cases}$$

Consider the first case (the second case goes similarly). Then there are f_n such that $\|f_n\| = 1$ such that $(Tf_n, f_n) \to \|T\|$. Hence there is a subsequence $Tf_{n_k} \to g \in \mathcal{H}$. We claim that g is an eigenfunction, and moreover $Tg = \lambda g$ where $\lambda = \|T\|$.

Indeed, observe that

$$\|Tf_n - \lambda f_n\|^2 = \|Tf_n\|^2 - 2\lambda(Tf_n, f_n) + \lambda^2$$

$$\le \|T\|^2\|f_n\|^2 - 2\lambda(Tf_n, f_n) + \lambda^2,$$
which tends to $\lambda^2 - 2\lambda^2 + \lambda^2 = 0$ as $n \to \infty$. Thus
\[
\lim_{n \to \infty} \|Tf_n - \lambda f_n\| = 0.
\]
Now since $Tf_{n_k} \to g$ and $Tf_{n_k} - \lambda f_{n_k} \to 0$, it follows that $\lambda f_{n_k} \to g$. Taking norms, $\|g\| = \|T\|$. Then by continuity of T, we obtain $T(\lambda f_{n_k}) \to Tg$. But the former tends to λg, whereupon $\lambda g = Tg$. Hence g is an eigenfunction, with eigenvalue $\|T\|$. \hfill \square

Claim 20.5. Consider the linear subspace
\[
S = \langle \{\text{all eigenfunctions of } T\} \rangle = \langle \{\phi_k\} \rangle.
\]
Then $S = \mathcal{H}$.

Proof. Suppose that $S \not\subseteq \mathcal{H}$. Then write $\mathcal{H} = S \oplus S^\perp$. If $f \in S$, then $Tf \in S$. Also if $g \in S^\perp$ and $f \in S$, then $(f, Tg) = (Tf, g) = 0$. Thus T restricts to the following operator:
\[
T_1 = T|_{S^\perp} : S^\perp \to S^\perp.
\]
Observe that the targets are both Hilbert spaces, and $T_1 \neq 0$ is compact and symmetric. Thus $\lambda_1 = \pm\|T_1\| \neq 0$ is an eigenvalue. Hence there is an eigenfunction $g \in S^\perp$ such that $\|g\| = 1$ and $T_1g = \lambda_1g$. But from the homework, the eigenvalues of T_1 must tend to 0; this is a contradiction. \hfill \square

Fourier Analysis

Notation

$E \subset \mathbb{R}^n$, $L^p(E) = L^p(E, L^n)$. If $U \subset \mathbb{R}^n$ is open, then $C^k(U) = \{f : U \to \mathbb{R}\}$ such that f and all partial derivatives up to order k are continuous. We set
\[
C^\infty(U) = \bigcap_{k=1}^{\infty} C^k(U),
\]
the smooth functions. Also $C_c^\infty(U) = C^\infty(U) \cap C_c$, and when $U = \mathbb{R}^n$ we drop the U dependence from our notation.

We set $\partial_j = \frac{\partial}{\partial x_j}$ for $j \leq n$.

Definition 20.6. A **multi-index** is an ordered n-tuple of non-negative integers. If $\alpha = (\alpha_1, \cdots, \alpha_n)$, then its **length** is
\[
|\alpha| = \sum_{i=1}^{n} \alpha_i,
\]
and its factorial is
\[
\alpha! = \prod_{j=1}^{n} \alpha_j!.
\]
For $x = (x_1, \cdots, x_n) \in \mathbb{R}^n$, we set

$$\partial^\alpha = \prod_{i=1}^n \partial_i^{\alpha_i}, \quad x^\alpha = \prod_{i=1}^n x_i^{\alpha_i}. $$

Assume that $f \in C^k$. Then Taylor’s formula becomes

$$f(x) = \sum_{|\alpha| \leq k} \frac{\partial^\alpha f(x_0)(x-x_0)^\alpha}{\alpha!} + R_k(x), \quad \lim_{x \to x_0} \frac{|R_k(x)|}{|x-x_0|} = 0.$$

If $f, g \in C^k$, $|\alpha| \leq k$ then

$$\partial^\alpha (fg) = \sum_{\beta + \gamma = \alpha} \frac{\alpha!}{\beta! \gamma!} \partial^\beta f \partial^\gamma g.$$
Example 21.1.
For \(t \in \mathbb{R} \), set
\[
\eta(t) = e^{-1/t} \chi_{(0,\infty)} \in C^\infty.
\]
Then for \(x \in \mathbb{R}^d \), set
\[
\Psi(x) = \eta(1 - \frac{1}{|x|}) = \begin{cases}
\exp\left(-\frac{1}{1-|x|^2}\right), & |x| < 1 \\
0, & |x| \geq 1
\end{cases}
\]
Observe that \(\Psi \in C^\infty(\mathbb{R}^d) \), and \(\text{supp} \phi = \overline{B_1} \).

Let \(S \) be the Schwartz class (smooth functions such that all derivatives vanish at \(\infty \) “faster than any polynomial”). For instance, \(e^{-x^2} \).

For any \(N \in \mathbb{N} \) and any multi-index \(\alpha \), we set
\[
\|f\|_{N,\alpha} = \sup_{x \in \mathbb{R}^d} (1 + |x|)^N |\partial^\alpha f(x)|.
\]
Formally, we define the Schwartz class as follows:
\[
S = \{ f \in C^\infty : \|f\|_{N,\alpha} < \infty, \quad \forall N, \alpha \}.
\]
Observe that \(C^\infty_c(\mathbb{R}^d) \nsubseteq S \).

Remark. 1. If \(f \in S \), then \(\partial^\alpha f \in L^p(\mathbb{R}^d) \) for all \(\alpha \). Thus \(\|f\|_{N,\alpha} < C_{N,\alpha} \). Hence \(|\partial^\alpha f(x)| \leq C_{N,\alpha} (1 + |x|)^{-N} \). Integrating,
\[
\int_{\mathbb{R}^d} |\partial^\alpha f(x)|^p \leq C_{N,\alpha} \int_{\mathbb{R}^d} (1 + |x|)^{-Np} \, dx
\]
\[
\leq C_{N,\alpha} \left(\int_{B_1} (1 + |x|)^{-Np} \, dx + \int_{|x| \geq 1} (1 + |x|)^{-Np} \, dx \right)
\]
\[
\leq C_{N,\alpha} |B_1| + (\infty),
\]
for \(N > \frac{d}{p} \).

Proposition 21.2. Let \(\{f_n\} \subset S \) such that
Claim 22.1. $\partial^\alpha (x^\beta f)$ is bounded for all α, β implies that $x^\beta \partial^\alpha f$ is bounded for all α, β.

Proof. Expand as a finite linear combination.

Let $f: \mathbb{R}^n \to \mathbb{R}^n$ for $y \in \mathbb{R}^n$ set $\tau_y f(x) = f(x - y)$. Then $\|\tau_y f\|_p = \|f\|_p$ for $p < \infty$ and $\|\tau_y f\|_u = \|f\|_u$.

Definition 22.2. f is uniformly continuous whenever $\|\tau_y f - f\|_u \to 0$ as $|y| \to 0$.

Lemma 22.3. If $f \in C_c(\mathbb{R}^n)$ then f is uniformly continuous.

Proposition 22.4. If $1 \leq p < \infty$ then translation is continuous in L^p.

Proof. Apply with $\tau_z f$ in place of f; then it suffices to show that $\|\tau_y f - f\|_p \to 0$. If $g \in C_c(\mathbb{R}^n)$, then $\|\tau_y g - g\|_p \to 0$ as $|y| \to 0$.

If $|y| < 1$, then $|\tau_y g - g|$ is supported in $\text{supp} g + B = K$.

$$\int |\tau_y g - g|^p \, dx \leq \mu \leq \|\tau_y g - g\|_u^p m(K).$$

Now by uniform continuity, this tends to 0.

Consider any $f \in L^p$. Fix an $\epsilon > 0$, and choose $g \in C_c$ such that $\|f - g\|_p < \epsilon$. Choose δ such that for $|y| < \delta$, $\|\tau_y g - g\|_p < \epsilon$. Then $\|\tau_y f - f\|_p \leq 3\epsilon$, so we’re done. \qed

Smoothing operators and convolution

Definition 22.5. If f, g are measurable on \mathbb{R}^n, then the convolution is

$$f * g(x) = \int f(x - y) g(y) \, dy.$$

when the integral exists.

Assuming all integrals that follow actually exist,

Proposition 22.6. 1. $f * g = g * f$

2. $(f * g) * h = f * (g * h)$

3. For $z \in \mathbb{R}^n$, $\tau_z (f * g) = (\tau_z f) * g = f * (\tau_z g)$

4. $\text{supp}(f * g) \subset \text{supp} f + \text{supp} g$
If \(f \in L^1 \) and \(g \in L^\infty \), then \(f \ast g \) is bounded. The idea is that even when you integrate something ugly, it becomes nice.

Proof. We need Fubini for (2). To prove (3),

\[
\tau_z(f \ast g)(x) = (f \ast g)(x-z) = \int f(x-z-y)g(y) \, dy = \int \tau_z f(x-y)g(y) \, dy = (\tau_z f) \ast g(x)
\]

(4) is clear, because the only way for \(g(y)f(x-y) \neq 0 \) is for \(y \in \text{supp } g, x-y \in \text{supp } f \) whereupon \(\text{supp}(f \ast g) \subset \text{supp } f + \text{supp } g \).

This is all fine and dandy, but so far we don’t know if any of these integrals ever exist.

Theorem 22.7 (Young’s Inequality). If \(f \in L^1 \) and \(g \in L^p \), then

\[
\|f \ast g\|_p \leq \|f\|_1 \|g\|_p.
\]

Choose \(d\nu(y) = |f(y)| \, dy \); then by Minkowski,

Proof.

\[
\int |f \ast g|^p \, dx \leq \left(\int \left(\int |f(y)||g(x-y)| \, dy \right)^p \, dx \right)^{1/p} \leq \left(\int \left(\int |g(x-y)|^p \, dx \right)^{1/p} |f(y)| \, dy \right)^p \leq (\|g\|_p \|f\|_1)^p
\]

Proposition 22.8. If \(f \in L^p \) and \(g \in L^q \), then \(f \ast g \) exists for every \(x \); also \(f \ast g \) is bounded and uniformly continuous, with \(\|f \ast g\|_u \leq \|f\|_p \|g\|_q \). Lastly when \(p \in (1, \infty) \), \(f \ast g \in \mathcal{C}_0(\mathbb{R}^n) \).

In other words, convolution is a smoothing operator.

Proof. By Hölder, \(|f \ast g|(x) \leq \|f\|_p \|g\|_q \). The uniform bound follows, as well as existence of \(f \ast g \) for every \(x \).

For uniform continuity,

\[
\|\tau_y (f \ast g) - (f \ast g)\|_u \leq \|(\tau_y f - f) \ast g\|_u \leq \|\tau_y f - f\|_p \|g\|_q.
\]

Hence for \(1 \leq p < \infty \), we have the result. For \(p = \infty \), interchange the roles of \(f, g \).
Recall that $C_0(\mathbb{R}^n)$ is the closure of $C_c(\mathbb{R}^n)$ (in the uniform norm). Since $f \in L^p$ and $g \in L^q$, there are $f_k, g_k \in C_c$ such that $\|f_k - f\|_p \to 0$ and same for g. Then $\text{supp } f_k \ast g_k$ is compact. Lastly
\[
\|f_k \ast g_k - f \ast g\|_u \leq \|f_k\|_p \|g_k - g\|_q + \|f_n - f\|_p \|g\|_q.
\]
Since $\|f_k\|_p$ converges (and hence is bounded), the result follows. \hfill \qed

Sneak peek of homework: Another version of Young’s Inequality.

Proposition 22.9. Consider $1 \leq p, q, r \leq \infty$ with $p^{-1} + q^{-1} = 1 + r^{-1}$. Then $\|f \ast g\|_r \leq \|f\|_p \|g\|_q$ whenever things are defined.
Convolution is a smoothing operator.

Proposition 23.1. If \(f \in L^1 \), \(g \in C^k \), and \(\partial^\alpha g \in L^\infty \) for \(|\alpha| \leq k \), then
\[
f \ast g \in C^k \text{ with } \partial^\alpha(f \ast g) = f \ast \partial^\alpha g.
\]

Proof.
\[
\frac{f \ast g(x + te_j) - f \ast g(x)}{t} = \frac{1}{t} \int (f(y)g(x + te_j - y) - f(y)g(x - y)) \, dy
\]
\[
= \int f(y)\partial_j g(x - y) \, dy = f \ast \partial_j g(x),
\]
by dominated convergence. Indeed, by the mean value theorem
\[
\frac{|g(x - y + te_j) - g(x - y)|}{|t|} \leq \|\partial_j g\|_{\infty}
\]
so the integrand is bounded by \(\|\partial_j g\|_{\infty}|f(y)| \) which is integrable.

Note: More generally, we may assume that \(f \in L^p \) and \(\partial^\alpha g \in L^q \) to obtain the same result via Hölder.

Proposition 23.2. If \(f, g \in S \), then \(f \ast g \in S \).

Proof. We show that \(f \ast g \in C^\infty \). Note that \(1 + |x| \leq 1 + |x - y| + |y| \leq (1 + |x - y|)(1 + |y|) \). Then
\[
(1 + |x|)^N|\partial^\alpha(f \ast g)(x)| \leq (1 + |x|)^N \int |\partial^\alpha f(x - y)| |g(y)| \, dy
\]
\[
\leq \int (1 + |x - y|)^N |\partial^\alpha f(x - y)| (1 + |y|)^{N+n+1}(1 + |y|)^{-n-1}|g(y)| \, dy
\]
\[
\leq \|f\|_{(N,\alpha)}\|g\|_{(N+n+1,0)} \int (1 + |y|)^{n+1}.
\]

For any \(\Phi \in L^1 \) with \(\int \Phi \, dx = a \), set \(\Phi_t(x) = t^{-n}\Phi(x/t), t < 1 \).

Theorem 23.3. With \(\Phi \) as above,

1. If \(f \in L^p \), \(p \in [1, \infty) \) then \(f \ast \Phi_t \to af \) in \(L^p \).
2. If f is bounded and uniformly continuous, then $f \ast \Phi_t \to af$ uniformly.

3. If $f \in L^\infty$ and $f \in C(U)$, U open, then $f \ast \Phi_t \to af$ uniformly on compact sets.

Proof. In all cases,

$$f \ast \Phi_t(x) - af(x) = \int (f(x-y) - f(x)) \Phi_t(y) \, dy$$

$$= \int (f(x-y) - f(x)) t^{-n} \Phi(y/t) \, dy$$

(y = tz)

$$= \int (f(x-yz) - f(x)) \Phi(z) \, dz$$

$$= \int (\tau_{tz}f(x) - f(x)) |\Phi(z)| \, dz.$$

1. By the above,

$$\|f \ast \Phi_t - af\|_p \leq \left(\int \left(\int |\tau_{tz}f(x) - f(x)| |\Phi(z)| \, dz \right)^p \, dx \right)^{1/p}$$

(Minkowski)

$$\leq \int \left(\int |\tau_{tz}f(x) - f(x)|^p \, dx \right)^{1/p} |\Phi(z)| \, dz$$

$$= \int \|\tau_{tz}f - f\|_u |\Phi(z)| \, dz.$$

This tends to 0 by continuity of translation, $\|\tau_{tz}f\|_p = \|f\|_p$, and dominated convergence.

2. Observe that

$$|f \ast \Phi_t(x) - af(x)| \leq \int |\tau_{tz}f(x) - f(x)| |\Phi(z)| \, dz$$

$$\leq \int \|\tau_{tz}f - f\|_u |\Phi(z)| \, dz$$

$$\Rightarrow \|f \ast \Phi_t - af\|_u \leq \int \|\tau_{tz}f - f\|_u |\Phi(z)| \, dz.$$

Since f is uniformly continuous and $\Phi \in L^1$, the right side tends to 0 so by dominated convergence we’re done.

3. We need to address that the integral involves things outside of U. We can cover most of U with a compact set, where the convergence is uniform. On the remaining portion, we can make Φ small.

Given $\epsilon > 0$, there is a compact $E \subset \mathbb{R}^n$ (it’s a ball) such that

$$\int_{E^c} |\Phi| \, dx < \epsilon.$$
To prove uniform convergence, fix any compact $K \subset U$. Choose $\delta > 0$ such that for $|t| < \delta$, $K - tE \subset K' \subset U$ with K' compact. Then

$$\sup_{x \in K, z \in E} |f(x - yz) - f(x)| < \epsilon.$$

Hence

$$\sup_{x \in K} |f \ast \Phi_t(x) - af(x)| \leq \sup_{x \in K} \int |f(x - tz) - f(x)| |\Phi(z)| \, dz$$

$$= \sup_{x \in K} \left\{ \int_E |f(x - yz) - f(x)| |\Phi(z)| \, dz + \int_{E^c} |f(x - yz) - f(x)| |\Phi(z)| \, dz \right\}$$

$$\leq \int_{E \times K, z \in E} |f(x - tz) - f(x)| |\Phi(z)| \, dz$$

$$+ 2\|f\|_\infty \int_{E^c} |\Phi(z)| \, dz$$

$$\leq \epsilon \int_E |\Phi(z)| \, dz + 2\|f\|_\infty \int_{E^c} |\Phi(z)| \, dz$$
Convolutions smooth things out.

Theorem 24.1. Suppose $|φ(x)| \leq C(1 + |x|)^{-n-ε}$ for $ε, C > 0$. Then $φ \in L^1$ and assume that $∫ φ \, dx = a$. If $f \in L^p$ for $p \in [1, ∞]$, $f * φ_t(x) → af$ for a.e. $x \in \mathbb{R}^n$.

Proof. The Lebesgue set of f consists of those points where $B(x, r) \ni f(y) - f(x)/φ_t(y) \leq δ m(B_r)$ as $r \to 0$. For all $δ > 0$, there is a $y > 0$ such that for $0 < r < y$,

$$∫_{|y| < r} |f(x - y) - f(x)| \, dy \leq δ m(B_r)$$

$$|f * φ_t(x) - af(x)| \leq ∫_{|y| ≤ η} |f(x - y) - f(x)| |φ_t(y)| \, dy$$

$$+ ∫_{|y| > η} |f(x - y) - f(x)| |φ_t(y)| \, dy$$

$$∫_{|y| > η} |f(x - y) - f(x)| |φ_t(y)| \, dy \leq ∫_{|y| > η} (|f(x - y)| + |f(x)|) |φ_t(y)| \, dy$$

$$\leq |f(x)| ∫_{|y| ≥ η} |φ_t(y)| \, dy + ∥f∥_p ∫_{|y| ≥ η} |φ_t(y)|^q \, dy^{1/q}$$

$$= I + I_q.$$

We estimate $(∫_{|y| ≥ η} |φ_t(y)|^q)^{1/q}$ in the case $q = ∞$.

$$|φ_t(y)| = t^{-n} φ(y/t) \leq c t^{-n} \left(1 + \frac{|y|}{t}\right)^{-n-ε}$$

$$\leq c t^{-n} (1 + η/t)^{-n-ε} = c t^ε (t + η)^{-n-ε}$$

$$\leq c η^{-n-ε} t^ε \to 0 \quad (t \to 0).$$

Thus we’ve shown $∥φ_t(y)χ_{|y| ≥ η}∥_∞ → 0$, so $I_∞(t) → 0$.

□
Now consider \(q < \infty \). it follows that

\[
\int_{|y| \geq \eta} |\phi_t(y)|^q \, dy = \int_{|y| \geq \eta} t^{-nq} |\phi(y/t)|^q \, dy
= t^{n(1-q)} \int_{|z| > \eta/t} |\phi(z)|^q \, dz
\leq t^{n(1-q)} \int_{|z| > \eta/t} (1 + |z|)^{-q(n+\epsilon)} \, dz
= c_n \int_{\eta/t}^{\infty} r^{n-1} (1 + r)^{-q(n+\epsilon)} \, dr
\]

(bound the integral)

\[
\leq c_n t^{n(1-q)} \frac{1}{q(n+\epsilon) - n} \left(\frac{n}{t} \right)^{n-q(n+\epsilon)}
= c_{n,q,n} t^{q\epsilon}
\]

Therefore \(I_q(t) \to 0 \) for \(q < \infty \).

Thus what happens outside of the ball goes to 0, so our estimate depends on the dynamics inside the small ball. We will decompose the ball into annular regions, which is a technique used in harmonic analysis for more involved bounds. We are doing this proof as much for the result as we are to illustrate the technique.

Choose \(t \) so small such that \(\eta/t \geq 1 \). Then choose \(k_0 \in \mathbb{N} \) such that \(2^{k_0} \leq \eta/t < 2^{k_0+1} \). For \(2^{-k-1} \eta \leq |y| < 2^{-k} \eta \) for \(k = 0, \ldots, k_0 - 1 \). Then \(|\phi_t(y)| \leq c_n t^\epsilon 2^{(k+1)(n+\epsilon)} \eta^{-n-\epsilon} \). We substitute the estimate then change to the annular region.

\[
\int_{|y| < \eta} |f(x - y) - f(xx)| |\phi_t(y)| \, dy = \sum_{j=1}^{k_0-1} \int \{ 2^{-j} \eta < |y| < 2^{-j+1} \eta \} + \int \{|y| \leq 2^{-k_0} \eta \}
\]

Now recall that for \(j \geq 1, 2^{-j+1} \eta \leq \eta \). Since \(x \) is a Lebesgue point, the first expression is

\[
\leq C t^\epsilon \eta^{-n-\epsilon} \delta \sum_{j=1}^{k_0-1} 2^{j(n+\epsilon)} (2^{-j+1})^n \eta^n + C t^{-n} (2^{-k_0} \eta)^n \delta
\leq C t^\epsilon \eta^{-\epsilon} \delta t \sum_{j=0}^{k_0} 2^{j\epsilon} + C t^{-n} \eta^n 2^{-k_0+n} \delta.
\]

Thus we get the estimate

\[
\int_{|y| < \eta} |f(x - y) - f(x)| |\phi_t(y)| \, dy \leq C \delta \left\{ \left(\frac{t}{\eta} \right)^{2^{k_0+1}} + \left(\frac{\eta}{t^{2^{-k_0}}} \right)^n \right\}.
\]

But \(t/\eta^{2k_0} \leq 1 \) and \(\eta/t^{2^{-k_0}} \leq 2 \); hence we have a constant bound \(C \delta \). All in all, we’ve obtain \(|f \ast \phi_t(x) - af(x)| \leq C \delta + o(t) \), so we’re done.
Proposition 25.1. C_c^∞ and S are dense in L^p ($p < \infty$) and in $C_0(\mathbb{R}^n)$.

Proof. We start with $f \in L^p$; for any $\epsilon > 0$, there is a $g \in C_c(\mathbb{R}^n)$ such that $\|f - g\|_p < \epsilon$. Recall the function

$$\Psi(x) = \exp\left(\frac{1}{|x|^2 - 1}\right)\chi_{B_1} \in C_c^\infty.$$

More precisely, $\text{supp } \phi = \overline{B_1}$. Normalizing, we obtain

$$\phi = \frac{\Psi}{\int \Psi} \in C_c^\infty.$$

Then $\int \phi = 1$ and $\phi_t \ast g \in C_c^\infty$. For sufficiently small t, we obtain

$$\|g \ast \phi_t - g\|_p < \epsilon.$$

We are taking $\alpha = 1$ in the result from last time.

For the $C_0(\mathbb{R}^n)$ result, it suffices to approximate functions of compact support (by an earlier density result). Hence using the bound $\|g \ast \phi_t - g\|_u < \epsilon$, we obtain the result. \qed

We move on to the C^∞-Urysohn Lemma. Now we want to do partitions of unity with smooth functions, so that you can still differentiate without wrecking things (useful in PDE).

Lemma 25.2. If $K \subset U \subset \mathbb{R}^n$ with K compact, U open, then

$$\chi_K \leq f \leq \chi_U, \quad f \in C_c^\infty.$$

Proof. Set $\delta = d(K, U^c)/3 > 0$, and keep ϕ as before. Define the set

$$V = \{x \in \mathbb{R}^n : d(x, K) < \delta\}.$$

It follows that the function ϕ_δ satisfies

$$\text{supp } \phi_\delta = \overline{B_\delta}.$$

We set $f = \chi_V \ast \phi_\delta$, so that

$$f(x) = \int \phi_\delta(y)\chi_V(x - y) \, dy.$$

If $x \in K$ and $|y| < \delta$, then $x - y \in V$. Hence $f(x) = 1$.

Moreover, if $x \notin U$ then for $|y| < \delta$ we have $x - y \notin V$ then $f(x) = 0$. It is clear that $|f| \leq 1$ (by a simple integral bound), so we have constructed the desired approximation f. \qed
Fourier Transform

This is another operation that “smoothes things out”, but it also picks up other interesting behavior. We can see the size by convolving, but we can’t see oscillations.

Definition 25.3. Consider \(f \in L^1(\mathbb{R}^n) \). The Fourier transform of \(f \) is

\[
\hat{f}(\xi) = \int f(x) \exp(-2\pi i \langle x, \xi \rangle) \, dx.
\]

\(\hat{f} \) is nicer than \(f \):

1. \(\| \hat{f} \|_u \leq \| f \|_1 \)
2. \(\hat{f} \) is continuous, by dominated convergence:

\[
|\hat{f}(\xi_1) - \hat{f}(\xi_2)| = \left| \int f(x) \left(\exp(-2\pi i \langle \xi_1, x \rangle) - \exp(-2\pi i \langle \xi_2, x \rangle) \right) \, dx \right| \to 0,
\]

since the integrand is dominated by \(2|f(x)| \).

Consider the operator \(\hat{\cdot}:L^1(\mathbb{R}^n) \to \text{BC}(\mathbb{R}^n) \).

Theorem 25.4. For \(f, g \in L^1(\mathbb{R}^n) \),

(i) \(\tau_y \hat{f}(\xi) = \hat{f}(\xi) \exp(-2\pi i \langle \xi, y \rangle) \) and \(\tau_\eta \hat{f}(\xi) = \hat{h} \) where

\[
h(x) = f(x) \exp(2\pi i \langle x, \eta \rangle).
\]

(ii) If \(T: \mathbb{R}^n \to \mathbb{R}^n \) is an invertible linear transformation, set \(S = (T^{-1})^* \). Then

\[
\hat{f} \circ T = |(\det T)^{-1}| \hat{f} \circ S.
\]

In particular, for rotations \(T \) we have \(\hat{f} \circ T = \hat{f} \circ T \), and taking \(T_x = t^{-1}x \) for \(t > 0 \) yields

\[
\hat{f}_t(\xi) = \hat{f}(t\xi).
\]

(iii) \(\hat{f} \ast g = \hat{\cdot} \ast \hat{g} \)

(iv) If \(x^\alpha f \in L^1 \) for \(|\alpha| \leq k \), then \(\hat{f} \in C^k \) and

\[
\partial_\alpha \hat{f} = \left[(-2\pi i x)^\alpha f \right] \hat{\cdot}
\]

(v) If \(f \in C^k \) and \(\partial_\alpha f \in L^1 \) for \(|\alpha| \leq k \) and also \(\partial_\alpha f \in C_0 \) for all \(|\alpha| \leq k - 1 \), then

\[
\overline{\partial_\alpha f}(\xi) = (2\pi i \xi)^\alpha \hat{f}(\xi).
\]

(vi) The Riemann-Lebesgue lemma says

\[
\hat{\cdot}:L^1(\mathbb{R}^n) \to C_0(\mathbb{R}^n).
\]

Proof. Part (i) follows immediately. We’ll do the rest next time. \(\square \)
Properties

Consider $f, g \in L^1(\mathbb{R}^n)$.

2) For $T: \mathbb{R}^n \to \mathbb{R}^n$ linear and invertible, set $S = (T^{-1})^*$. Then

$$\hat{f} \circ T(\xi) = \int f(Tx) \exp(-2\pi i \langle \xi, x \rangle) \, dx$$

$$(z = Tx) = |\det T|^{-1} \int f(z) \exp(-2\pi i \langle xi, T^{-1}z \rangle) \, dz$$

$$= |\det T|^{-1} \hat{f}(S\xi),$$

since $(\xi, T^{-1}z) = (S\xi, z)$.

3) $f \ast g = \hat{f} \cdot \hat{g}$, since

$$\hat{f} \ast \hat{g}(\xi) = \int f \ast g \exp(-2\pi i \langle \xi, x \rangle) \, dx$$

$$= \int \int f(x - y)g(y) \exp(-2\pi i \langle \xi, x \rangle) \, dy \, dx$$

(Fubini) $$= \int g(y) \left(\int f(x - y) \exp(-2\pi i \langle \xi, x - y \rangle) \, dx \right) \exp(-2\pi i \langle \xi, y \rangle) \, dy$$

$$= \hat{f}(\xi) \hat{g}(\xi).$$

4) We differentiate with respect to ξ (which is what the subscript means). Using induction on $|\alpha|$, L^1-type bounds on all the derivative of $\exp(-2\pi i \langle \xi, x \rangle)$, and dominated convergence, it follows that

$$\partial_\xi^\alpha \hat{f}(\xi) = \partial_\xi^\alpha \int f(x) \exp(-2\pi i \langle \xi, x \rangle) \, dx$$

$$= \int f(x) \partial_\xi^\alpha \exp(-2\pi i \langle \xi, x \rangle) \, dx$$

$$= \int f(x)(-2\pi i x)^\alpha \exp(-2\pi i \langle \xi, x \rangle) \, dx$$

$$= \left[-(2\pi i x)^\alpha f \right]^{(\xi)}.$$

5) If $f \in C^k$, $\partial^\alpha f \in L^1$, $|\alpha| \leq k$. Suppose that $\partial^\alpha f \in C_0$ whenever $|\alpha| \leq k - 1$. Then

$$\overline{\partial^\alpha \hat{f}(\xi)} = (2\pi i \xi)^\alpha \hat{f}(\xi).$$
Now if $|\alpha| = 1$, for $f \in C_0 \cap C^1$ we have

$$
\int \left[\partial_j f(x) \right] \exp -2\pi i (x, \xi) \ dx = \int \partial_j (f(x) \exp -2\pi i (x, \xi)) \ dx - \int f(x) \partial_j \exp -2\pi i (x, \xi) \ dx
$$

$$
= 0 - \int f(x) (-2\pi i \xi_j) \exp -2\pi i (x, \xi) \ dx
$$

$$
= 2\pi i \xi_j \hat{f}(\xi).
$$

We are using that $f(x) \exp -2\pi i (x, \xi) \in C_0$, so the integral decays. Specifically, if f is of compact support we are done. Now we use density to extend. On each ball, you look at $f - f_n$.

By induction, we can assume it holds for $|\alpha| = k$. So for any α of length $k + 1$, we can write $\alpha = \alpha' + \beta$ for $|\beta| = 1$. Now since $\partial^\alpha f = \partial^\beta (\partial^{\alpha'} f)$, the result follows.

The Fourier transform sends L^1 into BC; but the Riemann-Lebesgue lemma gives us something a little bit better; we actually end up in $C_0(\mathbb{R}^n)$. To prove this, we use that C_c^∞ (smooth functions of compact support) is dense in $L^1(\mathbb{R}^n)$. Observe that

$$
|\partial_j \hat{f}(\xi)| = 2\pi|\xi||\hat{f}(\xi)| \leq M.
$$

Hence $\hat{f} \in C_0(\mathbb{R}^n)$. For $f \in L^1$, take a sequence $f_n \to f$ with $f_n \in C_c^\infty$. We’ve see that

$$
\|\hat{f} - \hat{f}_n\| \leq \|f - f_n\|_1,
$$

so $\hat{f}_n \to \hat{f}$ in the uniform norm. But $C_0(\mathbb{R}^n)$ is closed in the uniform norm, so $\hat{f} \in C_0(\mathbb{R}^n)$.

Corollary 26.1. $S \to S$, and this map is “continuous” in the right sense.

Proof. Consider $f \in S$. Then $x^\alpha \partial^\beta f \in L^1 \cap C_0$ for every α, β. Now consider

$$
L^\infty \ni x^\alpha \partial^\beta f(\xi) = (-2\pi i)^{\alpha} \partial^\alpha (\partial^\beta f(\xi)) = (-2\pi i)|\alpha| (2\pi i)^{|\beta|} \partial^\alpha (\xi^\beta \hat{f}(\xi)).
$$

Hence the latter is in L^∞. By our characterization of S, it follows that $\hat{f} \in S$.

Now we show that the Fourier transform acts continuously in the sense of a Frechet space. It suffices to show that given a sequence $f_m \in S$ such that

$$
|f_m| \to 0 \text{ for every } N, \alpha,
$$

we have $|\hat{f}_m - \hat{f}|(N, \alpha) \to 0$ for each N, α as well.

In order to get this type of estimate, it will suffice to prove some relationships among seminorms, which we then apply to $f = f_m - f$ (i.e., the following f is not the same f as above).

$$
\|x^\alpha \partial^\beta f\| \leq \|x^\alpha \partial^\beta f\|_{L^1}
$$

$$
\leq C_n \|1 + |x|^n x^\alpha \partial^\beta f\|_u
$$

$$
\leq C_n \|f\|_{(n+1, \alpha, \beta)}.
$$
Hence we have the bound
\[\| \partial^\alpha (\xi^\beta \hat{f}) \|_u \leq C_n \| f \|_{(n+1+|\alpha|,\beta)}. \]

If \(|\alpha| = 0\), we are done. Now for \(|\alpha| = 1\), we have
\[\partial^\alpha (\xi^\beta \hat{f}) = (\delta^\alpha \xi^\beta) \hat{f} + \xi^\beta \partial^\alpha \hat{f}. \]

Then we obtain
\[
\| (1 + |\xi|)^{\beta} \partial^\alpha f \|_u \leq \| \partial^\alpha (\xi^\beta f) \|_u + \| \xi^{\beta-\alpha} \hat{f} \|_u + \| \partial^\alpha \hat{f} \|_u \leq C_n \left[\| f \|_{(n+1+|\alpha|,\beta)} + \| f \|_{(n+1,\beta-\alpha)} + \| f \|_{(n+1+|\alpha|,0)} \right],
\]
and something similar holds for \(|\alpha| > 1\).

Then we eventually obtain
\[\| \hat{f} \|_{(N,\alpha)} \leq C_{N,\alpha} \sum_{|\gamma| \leq N+|\alpha|} \| f \|_{(N+n+1,\gamma)}, \]
and the original continuity statement follows.

The significance of this is that we can prove statement for Schwarz functions, which are then dense in “everything”.

\[\square \]
Proposition 27.1. Let \(f(x) = \exp -\pi a |x|^2 \) for \(a > 0 \) and \(x \in \mathbb{R}^n \). Then

\[
\hat{f}(\xi) = a^{-n/2} \exp -\pi |\xi|^2 / a.
\]

Proof. We do \(n = 1 \) then extend via Fubini. So \(f(x) = \exp -\pi ax^2 \) and \(f'(x) = -2\pi ax \exp -\pi ax^2 \). Hence

\[
(\hat{f}(\xi))' = [-2\pi i x \hat{f}](\xi)
\]

\[
= \frac{i}{a} \hat{f}'(\xi)
\]

\[
= 2\pi a \xi \hat{f}(\xi).
\]

Consequently

\[
\hat{f}'(\xi) = \frac{-2\pi a}{\xi} \hat{f}(\xi)
\]

\[
\implies 0 = \frac{d}{d\xi} \left(\hat{f}(\xi) \exp \frac{\pi}{a} \xi^2 \right)
\]

\[
\implies a^{-1/2} = \hat{f}(0) = \hat{f}(\xi) \exp \frac{\pi}{a} \xi^2.
\]

Thus the claim is proven for \(n = 1 \).

For \(n > 1 \), observe that

\[
\hat{f}(\xi) = \int \exp -\pi a \sum_{j=1}^n x_j^2 - 2\pi i \sum_{j=1}^n \xi_j x_j \, dx_1 \cdots dx_n
\]

\[
= \prod_{j=1}^n \left(\int \exp -\pi a x_j^2 - 2\pi i \xi_j x_j \, dx_j \right)
\]

\[
= \prod_{j=1}^n \left(a^{-1/2} \exp -\frac{\pi}{a} \xi_j^2 \right)
\]

\[
= a^{-n/2} \exp -\frac{\pi}{a} |\xi|^2.
\]

Theorem 27.2 (Fourier inversion formula). If \(f \in L^1 \) and \(\hat{f} \in L^1 \), then \(f \) agrees a.e. with a continuous function \(f_0 \) such that

\[
\hat{f} = [\hat{f}]^\vee = f_0.
\]

where \(\hat{f} = \int f(\xi) \exp 2\pi i (\xi, x) \, d\xi \).
Lemma 27.3. For \(f, g \in L^1 \), we have
\[
\int f \hat{g} = \int \hat{f} g.
\]

Proof. It’s just Fubini:
\[
\int f(\xi) \hat{g}(\xi) \, d\xi = \int f(\xi) \left(\int g(x) \exp -2\pi i(x, \xi) \, dx \right) \, d\xi = \int g(x) \left(\int f(\xi) \exp -2\pi i(x, \xi) \, d\xi \right) \, dx = \int g(\hat{f}).
\]

Proof of Fourier inversion. Fix \(t > 0 \) and \(x \in \mathbb{R}^n \). Then define
\[
\phi(\xi) = \exp 2\pi i(x, \xi) \exp -\pi t^2|\xi|^2 \in S.
\]
It follows that
\[
\hat{\phi}(y) = \tau_x \left(\exp -\pi t^2|\xi|^2 \right) (y) = \tau_x \left(t^{-n} \exp -\pi |y|^2 \right) = t^{-n} \exp -\pi |x - y|^2.
\]

Meanwhile, we have
\[
\hat{\phi}(y) = \int \exp 2\pi i(x, \xi) \exp -\pi t^2 |\xi|^2 \exp -w\pi i(\xi, y) \, d\xi = \int \exp 2\pi i(xi, x - y) \exp -\pi t^2 |\xi|^2 \, d\xi = t^{-n} \exp -\pi |x - y|^2.
\]

We make the definition \(g_t(x) = t^{-n} \exp -\pi |x|^2 t^2 \), so the last expression is just \(g_t(x - y) \). Also set \(g(x) = \exp -\pi |x|^2 \). We then have
\[
\int \phi(\xi) \hat{f}(\xi) \, d\xi = \int \exp -\pi t^2 |\xi|^2 \exp 2\pi i(\xi, x) \hat{f}(\xi) \, d\xi \quad \text{LDCT} \quad \rightarrow [\hat{f}]^\vee(x).
\]
Simultaneously, observe that
\[
\hat{\phi}(\xi)f(\xi) \, d\xi = \int f(y) g_t(x - y) \, dy = f * g_t(x) \rightarrow f,
\]
since \(\int f(x) \, dx = 1 \). Indeed, there is a sequence \(t_i \to 0 \) such that \(f * g_{t_i} \to f \) pointwise a.e. in \(x \). Thus \(f \) agrees a.e. with \(\hat{\hat{f}} \), and a symmetric argument holds for \(\hat{f} \). Hence we obtain the result.

Corollary 27.4. For \(f \in L^1 \), if \(\hat{f} = 0 \) then \(f = 0 \) a.e.

Corollary 27.5. \(\hat{\,} : S \to S \) is an isomorphism.

For \(f \in S \) we have \(\check{f}(x) = \hat{f}(-x) \). Hence we obtain a correspondence between the norms of \(f \) and \(\hat{f} \).

Plancherel Theorem

This is for the homework; specifically, problem 2 of homework 9.

If \(f \in L^1 \cap L^2 \) then \(\hat{f} \in L^2 \) and \(\hat{L^1 \cap L^2} \to L^2 \) extends uniquely to an isometry of \(L^2 \) (i.e. \(\| \hat{f} \|_2 = \| f \|_2 \)).

Proof of Plancherel. Let \(X = \{ f \in L^1 : \hat{f} \in L^1 \} \). Notice that \(S \subset X \). Now if \(f \in X \), we have \(\hat{f} \in L^1 \). Now by Fourier Inversion, we have \(f \in L^\infty \). It follows that

\[
\int |f|^2 \, dx \leq \| f \|_\infty \int |f| \, dx < \infty \implies f \in L^2.
\]

Note that this is an interpolation result: \(L^1 \cap L^\infty \subset L^2 \).

It follows that for \(f \in X \), we have \(f \in L^2 \). Since the Schwarz functions are dense in \(L^2 \), it follows that \(X \) is dense in \(L^2 \).

Claim 27.6. For \(f, g \in X \), we have \(\langle f, g \rangle = \langle \hat{f}, \check{g} \rangle \).

Proof. Let \(h = \check{g} \). Using Fourier Inverse, we have \(\hat{\check{h}}(\xi) = g(\xi) \). Therefore

\[
\int f \check{g} = \int f \hat{\check{h}} = \int \hat{f} \check{h} = \int \check{f} \check{g}.
\]

Thus \(f = g \), so \(\| \hat{f} \|_2 = \| f \|_2 \). We will finish the proof next time.
Theorem 28.1 (Plancherel). If $f \in L^1 \cap L^2$ then $\hat{f} \in L^2$ and $\wedge: L^1 \rightarrow L^2 \rightarrow L^2$ is an isometry.

Proof. We defined the subset

$$X = \{ f \in L^1 : \hat{f} \in L^1 \} \subset L^1 \cap L^2,$$

and showed that $\|\hat{f}\|_2 = \|f\|_2$ for $f \in X$.

Now we extend \wedge continuously to L^2. If $f \in L^2$, pick a sequence $f_n \rightarrow f$ with $f_n \in X$.

Now define an operator T by setting $Tf = \lim_{n \rightarrow \infty} \hat{f}_n$.

Claim 28.2. (1) T is well-defined

(2) $Tf = \hat{f}$ for $f \in L^1 \cap L^2$

Proof. (1) Observe that $\|\hat{f}_n - \hat{f}_m\|_2 = \|f_n - f_m\|_2$. Thus the sequence $\{\hat{f}_n\}$ is Cauchy in L^2, so it converges. The definition doesn’t depend on the choice of convergent sequence $\{f_n\}$, since if $\{g_n\}$ is any other sequence converging to f we have

$$\|g_n - \hat{f}_n\|_2 = \|g_n - f_n\|_2 \leq \|g_n - f\|_2 + \|f - f_n\|_2.$$

Hence g_n and \hat{f}_n have the same limit, so Tf is independent of the choice of convergent sequence.

(2) Take $g(x) = e^{-\pi |x|^2}$, and set $g_t(x) = t^{-n} e^{-\pi |x|^2/t^2}$. For $f \in L^1 \cap L^2$, it follows that $f * g_t$ is Schwarz, and hence L^1. Therefore

$$\hat{f}_t = (\hat{f} * g_t)(\xi) = e^{-\pi |\xi|^2 t^2} \hat{f}(\xi).$$

Now since $f \in L^1$, we have that \hat{f} is bounded and therefore $f * g_t \in X$. Observe that $\int g = 1$. Thus we have

$$f * g_t \rightarrow f, \quad t \rightarrow 0$$

where the convergence holds in both L^1 and L^2. Now since

$$\|f * g_t - f * g_s\|_2 = \|f * g_t - f * g_s\|_2,$$

it follows that $f * g_t$ also converges in L^2.

Next, observe that

$$\hat{f}_t = e^{-\pi |\xi|^2 t^2} \hat{f}(\xi) \rightarrow \hat{f}$$
where the convergence is uniform on compact sets (but pointwise would have sufficed). Now \(f * g_t \) has a subsequence that converges to \(Tf \) pointwise a.e., so by uniqueness of limits we have \(f * g_t \to Tf \) in \(L^2 \).

Lastly, observe that

\[
\|Tf\|_2 = \|f\|_2 \\
= \lim_{t \to 0} \|f * g_t\|_2 \\
= \lim_{t \to 0} \|f * g_t\|_2 \\
= \|f\|_2.
\]

The rest of today is purely formal (assume that all limiting operations go through).

Application to PDE

Definition 28.3. A **linear differential operator** is an operator of the form

\[
Lf = \sum_{|\alpha| \leq m} a_\alpha(x) \partial^\alpha f(x).
\]

If \(a_\alpha \) is constant in \(x \) for all \(\alpha \), we say that \(L \) has **constant coefficients**.

Our goal is to formally solve the equation \(Lu = f \) on \(\mathbb{R}^n \), where \(L \) has constant coefficients. In order to do so, we compute \(\hat{L}u = \hat{f} \). This yields

\[
\sum_{|\alpha| \leq m} a_\alpha \partial^\alpha u(\xi) = \sum_{|\alpha| \leq m} a_\alpha (2\pi i \xi)^\alpha \hat{u}(\xi).
\]

Definition 28.4. The **symbol** of \(L \) is defined to be

\[
P(\xi) = \sum_{|\alpha| \leq m} a_\alpha (2\pi i \xi)^\alpha.
\]

Therefore \(P(\xi)\hat{u}(\xi) = \hat{f}(\xi) \). Hence if we can find \(\phi \) such that \(P^{-1} = \hat{\phi} \), we will obtain

\[
u = (\hat{\phi} \hat{f})^\vee = \phi \ast f.
\]

Recall the PDE problem from homework 8; we were solving the Laplacian \(\Delta u = 0 \) on \(\mathbb{R}^{n+1}_+ \) with boundary condition \(u = f \) on the boundary. We needed \(f \in BC(\mathbb{R}^n \times \{0\}) \). Using this new technique, we can solve the differential equation for more general \(f \). Specifically, we allow \(f \in L^p(\mathbb{R}^n \times 0) \) for \(p \in [1, \infty) \). The boundary condition \(u = f \) becomes more complicated, since we need to control \(L^p \) norms now.
Consider the Laplacian Δ on \mathbb{R}^n. We compute its symbol

$$P(\xi) = \sum_{j=1}^{n} (2\pi i)^2 \xi_j^2 = -4\pi^2 |\xi|^2.$$

Now we write

$$\Delta_{\mathbb{R}^{n+1}} = \Delta_{\mathbb{R}^n} + \frac{\partial^2}{\partial t^2},$$

where we identify \mathbb{R}^{n+1} with (x, t) for $t > 0$ and $x \in \mathbb{R}^n$.

Taking Fourier transforms, we find that $\Delta_{\mathbb{R}^{n+1}} u = 0$ and $u(x, 0) = f(x)$ is equivalent to solving

$$-4\pi^2 |\xi|^2 \hat{u}(\xi, t) + \frac{\partial^2}{\partial t^2} \hat{u}(\xi, t) = 0, \quad \hat{u}(\xi, 0) = \hat{f}(\xi).$$

Using regularity at infinity (i.e. dropping terms that blow up), we have $\hat{u}(\xi, t) = C(\xi) e^{-2\pi t|\xi|}$. Then we obtain the solution

$$\hat{u}(\xi, t) = \hat{f}(\xi) e^{-2\pi t|\xi|}.$$

We obtain the Poisson kernel of \mathbb{R}^{n+1}_+, given by

$$P_t = \left[e^{-2\pi t|\xi|} \right]^n = c_n \frac{t}{(t^2 + |x|^2)^{(n+1)/2}}.$$

Therefore we obtain

$$\hat{u}(\xi, t) = \hat{P}_t(\xi) \hat{f}(\xi) = \hat{P}_t \ast \hat{f}(\xi),$$

which means $u(x, t) = P_t \ast f(x)$. We obtain $\|P_t \ast f - f\|_{L^p(\mathbb{R}^n \times \{0\})} \to 0$ as $t \to 0$.
1. Measure and integration (Q1)
2. Differentiation (Q1/Q2)
3. Topology (and metric spaces) (think of in class only - no need T1, metrizable)
4. Functional analysis (a little L^p at end of Q2, Hilbert spaces, compact operators)
5. L^p spaces
6. Extra topics: Radon measures, Fourier analysis

Measure and integration

1. Convergence theorems (Fatou, LDCT, Monotone, modes of convergence, simple functions used to approximate everything)
2. Egoroff (finite measure only!)
3. Fubini

Differentiation

1. Lebesgue differentiation theorem
2. Radon-Nikodym
3. BV, AC, and FTC
4. covering lemma

Topology and metric spaces

1. Arzela-Ascoli
2. Stone-Weierstrass
3. Urysohn’s Lemma
4. Baire Category
5. No Tychonoff
Functional analysis

1. Hahn-Banach (especially theorem 5.8 that’s a consequence; more useful)
2. OMT/Closed graph/UBP (all from Baire)
3. Hilbert spaces (especially bases, closest points)
4. Riesz Rep (In L^p, for \mathbb{R}^n, for Radon measures, Hilbert spaces; her very favorite)
5. Compact operators (spectral theorem and so on)

L^p spaces

1. Duality (also Riesz Rep)

Addition topics

1. Dual of L^∞; we only really did C_0 on compact sets. Then we exhausted to work on $C_c(\mathbb{R}^n)$. Folland has lots of extra things we didn’t do.

2. Fourier transform; the key points were Plancherel and IFT (the key things from the homework problem)

3. Vitali

The Vitali you SHOULD use:

You’re in a separable metric space X, and let \mathcal{F} be a collection of non-degenerate closed balls such that sup of diameters of the balls is finite. Then there exists $\{B_i\}$, a disjoint countable subcollection of \mathcal{F}, such that

$$\bigcup_{B \in \mathcal{F}} B = \bigcup_{i=1}^{\infty} 5B_i.$$

Moreover, if $B \in \mathcal{F}$, there is an i such that $B \cap B_i$ is non-empty and $B \subseteq 5B_i$.

There were some useful consequences. For instance, in \mathbb{R}^n and you had an open set, then you could cover the set in measure with a countable collection of disjoint balls. We might need to work with doubling measures for Vitali, but certainly not a Radon measure (like in GMT).
Reminder of convergence

Claim 29.1 (Prelim 2000 #6).

\[\int_0^1 \left(\sum_{k=1}^{\infty} \frac{x^k \cos(2^k \pi x)}{k} \right) \, dx = \sum_{k=1}^{\infty} \int_0^1 \frac{x^k \cos(2^k \pi x)}{k} \, dx. \]

Proof. The Harish approach is always Fubini, so we start trying this out (where \(dv \) is counting measure and \(dx \) is normal). By Fubini, \(f_k(X) \in L^1[0, 1] \) for every \(k \).

More straightforward to just use dominated. Then set \(f_n(x) \) to be the partial sum. For \(x \in [0, 1) \), we have

\[0 \leq |f_n(x)| \leq \sum_{k=1}^{n} x^k/k = g_n(x). \]

By general dominated convergence, if \(\int g_n \to \int g \) for some \(g \in L^1 \), and \(f_n \to f \) a.e., then

\[\int f_n \to \int f. \]

Note that we only know \(f \) on \([0, 1)\), it might not exist at \(x = 1 \).

The last detail to check was that \(g \in L^1 \) and \(\int g_n \to \int g \). By MCT, it follows that \(g \in L^1 \) (and we could have done this without generalized LDCT). The reason for the cosine was to force us to use MCT; any bounded measurable would work in its place (for the proof to go through). Don’t need to show measurable before integrating.

Read the exam in the first 5 minutes, classify the problems by what theorem they will require (what’s the key). After you’ve used the 5 minutes to do that, then start with the easiest one. This is a point competition, not to impress her about doing the most difficult one. There are 8 problems, 4 hours it’s a prelim.

Let \(f \) be \(AC[0, 1] \), \(p \in (1, \infty) \) assume \(f' \in L^p \) prove

\[\frac{|f(x) - f(a)|}{|x - a|^{1/q}} \to a. \]

We are using absolute continuity of integration, FTC, and Hölder.

\[\frac{|f(x) - f(a)|}{|x - a|^{1/q}} \leq \left(\int_a^x |f'|^p(t) \, dt \right)^{1/p} \]

then take limit as \(x \to a \) to finish.