Homework 5, due on Friday, May 5.

Reading: Read §§5.1-5.4.

Practice Problems

§5.1, pp. 225-226: 5,7cdjk. Do more of 7 and other starred problems if you feel unsure of the definitions in §5.1.

§5.2, pp. 240-241: 7,15ab.

Hand-In Problems

§3.5, p. 155: 16.

§4.1, p. 182: 11, 14 - give two proofs for 14, one that uses induction and one that does not. *Hints: For either proof, it may be helpful to write the three consecutive integers as* n-1*, n, and* n + 1*. For the inductive proof, you may instead use the book's hint in the appendix.*

§5.1, p. 227: 13a

§5.2, p. 239: 2(b)

Problem A4. Prove that an integer is divisible by 9 if and only if the sum of its digits is divisible by 9.

Problem A5. Give an example of a set S that contains an element x such that $x \in S$ and $x \subseteq S$.

Problem A6. (a) Let B be a subset of some universal set U. Prove that $(B^c)^c = B$. (You can prove this directly by an "element chase." Or it may be deduced as a corollary of a proposition in the book.)

(b) Do §5.2, p. 240: 8.

Problem A7. Let A and B be subsets of some universal set U. Prove each of the following.

(a) $A - (A \cap B) = A - B$.

(b) The set $A \cup B$ is the disjoint union of the three sets A - B, $A \cap B$, and B - A.