Pasta Cooking

Alice Rudders

August 2025

1 Concepts and Usage

Separable first-order differential equations, best for Math 125 weeks 8 or 9

2 Introduction

The equation $\frac{dh}{dt} = kh(1 - \frac{h}{K})$ can be used to represent pasta density over time in minutes, where h is equal to the mass in grams divided by the length of pasta in centimeters. The following values were determined for the density of the pasta initially, at 7 minutes, and the value as t approaches infinity (K).

$$h(0) = 1.4, h(7) = 0.59, K = 0.5$$

3 Questions

- 1. Write an equation h(t) to represent the density of the pasta at any given time in the cooking process.
- 2. If the pasta is fully cooked at 8 minutes, at what time is the pasta half cooked?
- 3.If the K value of a different pasta was found to be 0.4 instead of 0.5, how long should it be cooked to achieve the same density of the original cooked pasta?

Figure 1: Image taken from the article "Swelling, softening, and elastocapillary adhesion of cooked pasta" 2022 by Hwang et. al.

4 Solution to Question 1

$$\frac{dh}{dt} = kh(1 - \frac{h}{K})$$

$$\frac{dh}{h(1 - \frac{h}{K})} = (k)dt$$

$$\ln \frac{h}{K - h} = kt + C$$

$$\frac{h}{K - h} = e^C e^{kt}$$

$$e^C = A$$

$$\frac{h}{K - h} = Ae^{kt}$$

$$h = \frac{AKe^{kt}}{1 + Ae^{kt}}$$

$$A = \frac{h(0)}{K - h(0)} \approx -1.56$$

$$0.59 = \frac{(-1.56)(0.5)e^{k(7)}}{1 - 1.56e^{k(7)}}$$

$$k \approx 0.206$$

$$h(t) = \frac{-0.78e^{0.206t}}{1 - 1.56e^{0.206t}}$$