Title:

Calculus about moon's orbit

Concept and usage:

This project uses calculus and Kepler's laws to model the Moon's orbit, transitioning from a simplified circular model to a more accurate elliptical one.

The students could practice integral and derivative skills when calculating orbital properties like period and area swept by the moon.

Introduction:

By combining Kepler's Laws of Planetary Motion with calculus, we are able to predict the moon's position, velocity and acceleration in the key.

Kepler's First Law: Modeling the Moon's elliptical orbit.

Kepler's Second Law: Using calculus to prove equal areas are swept in equal times.

Kepler's Third Law: Relating the orbital period to distance.

Questions:

First, we will assume a circular orbit. In reality, the moon's orbit is slightly elliptical with an eccentricity e = 0.055. But it is close to circular.

1) How do we get the period of the moon's orbit about the Earth?

Some values we need to know:

Mass of the moon = $m1 = 7.36 * 10^2 2 \text{ kg}$

Mass of Earth = $m2 = 5.97 * 10^2 4 kg$

Gravitational constant = $G = 6.674 * 10^{(-11)} (N*m^2)/kg^2$

Mean distance of earth to moon = $3.84 * 10^8 m$

Moon's orbital eccentricity = 0.055

First equation: T = (2 * pi * r) / v

Second equation: $Fc = (m1 * v^2) / r$

Third equation: $Fg = (G * m1 * m2) / r^2$

And the gravitational force is acting as the centripetal force.

$$F_{c} : \frac{m_{1} \cdot v^{2}}{v} = F_{g} = \frac{m_{1} \cdot m_{2} \cdot G}{v^{2}}$$

$$F_{c} : F_{g} = \frac{m_{1} \cdot m_{2} \cdot G}{v^{2}}$$

$$F_{g} : \frac{m_{1} \cdot v^{2}}{V^{2}} = \frac{m_{1} \cdot m_{2} \cdot G}{v^{2}}$$

$$V : \frac{m_{2} \cdot G}{v}$$

$$V : \frac{m_{2} \cdot G}{v}$$

$$T : \frac{2\pi v}{\sqrt{m_{2} \cdot G}}$$

$$T : \frac{2\pi v}{\sqrt{G \cdot m_{2}}}$$

2) If the moon orbits the Earth circularly, find its velocity vector at t = 5 days.

Academy
$$\alpha_x(t) = \frac{dv_x}{dt} = -Rw^2 \cos(wt)$$

3) Apply the Kepler's laws for more question

For example: how much time the Moon spends in the top half of its orbit

Since Kepler's second law taught us that the moon sweeps equal areas in equal times.

The Ttop/Ttotal is also 0.5175.

Visual:

https://www.mooncalc.org/#/49.495,11.073,3/2025.08.17/23:41/1/3