Estimating Moments of Functions of Random
Variables with Taylor Expansions

Luke R Alexander
August 2025

1 Concept

One topic you gain access to with the tools of Calculus is the topic of Probabil-
ity. Probability is a branch of mathematics that is concerned with events and
measuring their likelihood of occurring. These events can be discrete in nature,
such as the flip of a coin; or continuous, such as selecting a random real number
between 0 and 1. Often times, mathematicians are concerned with measuring a
random variable, which is a function that maps ”outcomes” to some measurable
space (usually the real number line). What makes calculus useful in this context
is tools such as summation and integration allow us to make better sense of an
infinite number of outcomes, as is the case for continuous random variables.

One measure we are particularly concerned with are the moments of a ran-
dom variable. Most people are familiar with moments from physics such as
torque, but in probability they have a different meaning. Moments in probabil-
ity refer to the shape of a function’s graph, which in this case is the graph of its
distribution (a function that gives the probabilities of occurrence of outcomes
a random variable can take). Moments are helpful as they can help us find
out important measures of a random variable’s distribution, such as its mean
(average) and its variance.

For a continuous random variable X, its nth raw moment is defined as
follows:
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Most commonly though, moments are found using a moment generating function
(MGF):
Mx (t) = E[e'¥]

nth moments can then be derived from the MGF by taking the nth derivative
and evaluating at 0:
L =MP(0)
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What we are interested in however, is an approximation. At times, random
variables can have quite unwieldy distributions, which makes evaluating an in-



tegral challenging. In this case, we can use a taylor series to approximate a
moment, rather than try and solve an integral.

2 Examples of Taylor Expansion for Mean and
Variance

We can use a Taylor Series to approximate the mean of a function of a random
variable, here is an example:

E[f(X)] = E[f(ux + (X — px))]
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In this case, we only used three terms, but if we continued this series onward,
we could get a more and more accurate approximation of the mean.
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Now observe for variance:
Var(f(X)) = E[f(X)?] - E[f(X)]?
We expand around px, keeping just the first two terms
FOO) = Flx) + 1 () (X = i) + 58" () (X = )’
Var(f(X)) = (f'(ux))*Var(X)

Variance is a bit messier, but to write it in series notation, we have:
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Where p, is the ath central moment (about the mean)

3 Example Problem

Suppose X follows a standard normal distribution, approximate the mean of
f(X), where f(x) = 22
We can use our first formula to do this:
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If we write out the first three terms, we get:
E[X?] ~ pi® + 2u(p — p) + 0® = p> + 0% =1

So we have that the expectation of X2 is one. This actually matches the exact
answer if we were to just solve by integrating, since our function is a polynomial.



