Conservation of Energy Discussion (from 16.3)

Here is a brief discussion of the origin of the term conservative for a vector field, \mathbf{F}, that is the gradient of some potential function, f. Mathematically, this relationship is $\mathbf{F}=\nabla f$, but let's see where the terms come from.

FIRST, let $\mathbf{F}(x, y, z)$ be a force vector field that moves a particle of mass, m, from point A to point B along the curve C given by $r(t)$ with $a \leq t \leq b$ (remember we called such a path a flowline). By Newton's Second Law of Motion we get

$$
\mathbf{F}(\mathbf{r}(t))=m \mathbf{r}^{\prime \prime}(t) \quad(\text { Force }=\text { mass } \times \text { acceleration })
$$

Then the work done by the force on the particle is

$$
\begin{aligned}
W=\int_{C} \mathbf{F} \cdot d \mathbf{r} & =\int_{a}^{b} m \mathbf{r}^{\prime \prime}(t) \cdot \mathbf{r}^{\prime}(t) d t & & \text { (by definition and the fact above) } \\
& =\frac{m}{2} \int_{a}^{b} \frac{d}{d t}\left[\mathbf{r}^{\prime}(t) \cdot \mathbf{r}^{\prime}(t)\right] d t & & \text { (by the dot product derivative rule) } \\
& =\frac{m}{2} \int_{a}^{b} \frac{d}{d t}\left|\mathbf{r}^{\prime}(t)\right|^{2} d t & & \text { (by the definition of magnitude) } \\
& =\frac{m}{2}\left|\mathbf{r}^{\prime}(b)\right|^{2}-\frac{m}{2}\left|\mathbf{r}^{\prime}(a)\right|^{2} & & \text { (by the fundamental theorem of calculus) } \\
& =\frac{m}{2}|\mathbf{v}(b)|^{2}-\frac{m}{2}|\mathbf{v}(a)|^{2} & & \left(\mathbf{v}(t)=\mathbf{r}^{\prime}(t)=\right.\text { velocity) }
\end{aligned}
$$

In physics, $K(t)=\frac{1}{2} m|\mathbf{v}(t)|^{2}$ is called the kinetic energy of an object. Thus, for ANY force vector field along a flow line, we have

$$
\text { WORK }=K(B)-K(A)=\text { the change in kinetic energy. }
$$

SECOND, now let \mathbf{F} also satisfy our mathematical definition of conservative, that is, $\mathbf{F}=\nabla f(x, y, z)$. In physics, the potential energy of the particle is defined to be $P(x, y, z)=-f(x, y, z)$, which means $\mathbf{F}=-\nabla P$. In which case, from the fundamental theorem of 16.3 , we get

$$
\begin{aligned}
W=\int_{C} \mathbf{F} \cdot d \mathbf{r} & =-\int_{a}^{b} \nabla P \cdot d \mathbf{r} & & \text { (from above) } \\
& =-[P(\mathbf{r}(b))-P(\mathbf{r}(a)) & & \text { (by the fund. thm. of line integrals) }] \\
& =P(A)-P(B) & & \\
& =\text { negative change in potential energy } & &
\end{aligned}
$$

Hence, IF $\mathbf{F}=\nabla f$, then we can say that the change in kinetic energy $=K(B)-K(A)=$ WORK $=P(A)-P(B)=$ change in potential energy Another way to say write this is:

$$
P(B)+K(B)=P(A)+K(A) .
$$

So the sum of potential and kinetic energy is conserved from A to B in a conservative vector field. This is the law of conservation of energy.

