ADDED PROBLEM 4 ON TUESDAY 11/15.

See also: recent quizzes, the actual quiz and the samples, esp. quiz 3 (on parametrizing surfaces); MT 2 review assignment on WebAssign; and two more, if you need more: p. 1107, #5 & 13 (answers in back of book).

I'll try to post some final answers or solutions for these 4 problems no later than noon on Thursday.

- 1. Let $f(x, y, z) = x \cos(\pi y) + ye^{z}$.
 - (a) Compute ∇f at (2,3,1).
 - (b) A curve $\mathbf{r}(t)$ passes through (2,3,1) at t = 0, so $\mathbf{r}(0) = (2,3,1)$. The velocity vector $\mathbf{r}'(0)$ points from (2,3,1) towards (5,3,5), and the speed there is $|\mathbf{r}'(0)| = 2$. Find $\mathbf{r}'(0)$ and use it to compute $\frac{d}{dt}f(\mathbf{r}(t))$ at t = 0. (Hint if you are stuck: use the chain rule.)
- 2. Let C be the curve consisting of the line segments from (0,0,0) to (1,1,1) and from (1,1,1) to (1,0,1). Compute the mass of a thin wire bent in the shape of the curve C if the density at any point is equal to $\rho(x, y, z) = 2 z$.
- 3. Let $\mathbf{F}(x, y) = (x^3 2xy^3)\mathbf{i} 3x^2y^2\mathbf{j}$.
 - (a) Show that **F** is conservative.
 - (b) Find a potential function for \mathbf{F} .
 - (c) Evaluate the line integral of **F** along the curve, $x = \cos^3 t$, $y = \sin^3 t$, $0 \le t \le \pi/2$.
- 4. Let C be the curve of intersection of the plane y + z = 5 and the cylinder $x^2 + y^2 = 9$, going counterclockwise as viewed from above.
 - (a) Find a parametrization of C. (Note that you are parametrizing a curve, so your answer should be a function on just one parameter. If that parameter is t, your answer would be in the form $\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle$, or just the trio of functions x(t), y(t), z(t).)
 - (b) Use your parametrization to compute $\int_C \boldsymbol{F} \cdot d\boldsymbol{r}$, if $\boldsymbol{F} = \langle x, 2y, -4 \rangle$