Final
March 14, 2012

Name: \qquad

Student ID Number:

PAGE 1	10	
PAGE 2	10	
PAGE 3	10	
PAGE 4	10	
PAGE 5	10	
PAGE 6	10	
PAGE 7	10	
Total	70	

- There are 7 questions spanning 7 pages. Make sure your exam contains all these questions.
- You are allowed to use a scientific calculator (no graphing calculators) and one hand-written 8.5 by 11 inch page of notes.
- You must show your work on all problems. The correct answer with no supporting work may result in no credit. Put a box around your FINAL ANSWER for each problem and cross out any work that you don't want to be graded. Give exact answers wherever possible.
- If you need more room, use the backs of the pages and indicate to the grader that you have done so.
- Raise your hand if you have a question.
- Any student found engaging in academic misconduct will receive a score of 0 on this exam.
- You may pick up your graded final during any of my office hours spring quarter.
- You have 110 minutes to complete the exam. Budget your time wisely. SPEND NO MORE THAN 15 MINUTES PER PAGE!

1. (10 pts) Compute the following integrals:
(a) $\int_{C}(x+1) d s$ where C is the line segment from $(1,0)$ to $(-2,4)$.
(b) $\iint_{S} 15 z d S$, where S is the surface of the sphere $x^{2}+y^{2}+z^{2}=1$ in the first octant.
2. (10 pts) Compute $\iint_{S}\langle x z, y z, 3 z\rangle \cdot d \mathbf{S}$ where S is the part of the cone $z=\sqrt{x^{2}+y^{2}}$ that is between $z=1$ and $z=2$ with downward orientation.
3. (10 pts) Consider the vector field $\mathbf{F}(x, y, z)=\left\langle y^{2}+2,2 x y, 3 z^{2}\right\rangle$ on \mathbb{R}^{3}. Note that curl $\mathbf{F}=\mathbf{0}$. Let C be the curve parameterized by $\mathbf{r}(t)=\left\langle 5 t^{10}, \cos (\pi t), 2 t^{3}-t-1\right\rangle$ for $0 \leq t \leq 1$. Compute $\int_{C} \mathbf{F} \cdot d \mathbf{r}$.
(Please use the consequences of the fact that $\operatorname{curl} \mathbf{F}=\mathbf{0}$).
4. (10 pts) Set up (DO NOT EVALUATE) two triple integrals that represent the volume of the solid bounded by the planes $3 x+2 y+z=6, z=0, y=0$, and $x=1$. You must give two answer in the orders specified.
(a) In the order $d z d y d x$:

(b) In the order $d x d z d y$:
5. (10 pts) Consider the vector field $\mathbf{F}(x, y, z)=\left\langle x^{4}+3 x, x^{3}-\cos (y)\right\rangle$ on \mathbf{R}^{2}. Let C be the positively oriented CLOSED curve that consists of the curve C_{1} which is the arc of parabola $y=1-x^{2}$ from $(1,0)$ to $(-1,0)$ followed by the curve C_{2} which is the line segment from $(-1,0)$ to $(1,0)$.
Compute $\int_{C} \mathbf{F} \cdot d \mathbf{r}$.

6. (10 pts) You impose a coordinate system on a hot sand beach and find the temperature at each point is given by $T(x, y)=x^{2}+y^{2}+4 y+90$ degrees Fahrenheit, where x and y are in feet.
Assume you walk barefoot half way around a circular path, C, from $(3,0)$ to $(-3,0)$ in such a way that your motion is parameterized by $\mathbf{r}(t)=\langle 3 \cos (t), 3 \sin (t)\rangle$ where t is in seconds with $0 \leq t \leq \pi$.
GIVE UNITS FOR ALL YOUR ANSWERS.
(a) Give the direction and magnitude of the greatest rate of change at the point $(3,0)$. (This question has nothing to do with C).
(b) As you walk along the curve C, what is the rate of change of temperature with respect to time at $t=\pi / 4$ seconds?
(c) Compute $\frac{1}{3 \pi} \int_{C} T(x, y) d s$. (This is the average temperature along C).
7. (10 pts) Consider the vector field $\mathbf{F}(x, y, z)=\left\langle 1+3 y^{3},-6 x,-3 z^{2}+x\right\rangle$ on \mathbb{R}^{3}. Let S be the CLOSED surface that consists of the cylinder $x^{2}+y^{2}=9$ for $0 \leq z \leq 1$ and the parts of the planes $z=0$ and $z=1$ that are inside the cylinder. Find the flux of \mathbf{F} across S.
That is, compute $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$.
You may pick either the outward or inward orientation for S, but in the end I want you to tell me if the net flux of \mathbf{F} across S is outward or inward.

