16.6 Parameterizing Surfaces

Recall that \(\mathbf{r}(t) = (x(t), y(t), z(t)) \) with \(a \leq t \leq b \) gives a parameterization for a curve \(C \). In section 16.2-16.4, we learned how to make measurements along curves for scalar and vector fields by using line integrals \(\int_C \). We computed these line integrals by first finding parameterizations (unless special theorems apply).

In a similar way, we will parameterize a surface \(S \) using

\[\mathbf{r}(u, v) = (x(u, v), y(u, v), z(u, v)), \]

where \((u, v)\) are constrained to some region \(D \) in the \(uv\)-plane. In section 16.7-16.9, we learned how to make measurements across surfaces for scalar and vector fields by using surface integrals \(\int_S \). We will compute these surface integrals by first finding parameterizations (and later we will learn theorems that apply in special cases).

For now, let’s focus on parameterization.

Questions: Find a parameterization for each surface:

1. The part of the surface \(z = 10 \) that is above the square \(-1 \leq x \leq 1, -2 \leq y \leq 2\).
2. The part of the surface \(x - y + z = 4 \) that is within the cylinder \(x^2 + y^2 = 9 \).
3. The part of the surface \(z = x^2 + y^2 \) that is above the region in the \(xy\)-plane given by \(0 \leq x \leq 1, 0 \leq y \leq x^2 \).
4. The part of the paraboloid \(y = 9 - x^2 - z^2 \) that is on the positive \(y \) side of the \(xz\)-plane.
5. The part of the circular cylinder \(x^2 + y^2 = 4 \) that is between the planes \(z = 1 \) and \(z = 5 \).
6. The upper hemisphere of the sphere \(x^2 + y^2 + z^2 = 9 \).
7. The entire sphere \(x^2 + y^2 + z^2 = 16 \).
8. The surface of revolution given by rotating the region bounded by \(y = x^3 \) for \(0 \leq x \leq 2 \) about the \(x\)-axis.
9. Find the parameterization for all three sides of the solid object within \(x^2 + y^2 = 1 \), above \(z = 0 \) and below \(z = 5 - x \) shown here (ignore the curve):
Solutions:

1. Notes: The parameterization is already given!
 \(\mathbf{r}(u, v) = (u, v, 10) \), (I am just letting \(x = u \) and \(y = v \)).
 You could also just leave them as \(x \) and \(y \) and give the parameterization as:
 \(\mathbf{r}(x, y) = (x, y, 10) \) with \(-1 \leq x \leq 1, -2 \leq y \leq 2 \).

2. Notes: The surface can easily be solve for \(z \) in terms of \(x \) and \(y \).
 \(\mathbf{r}(u, v) = (u, v, 4 - u + v) \), (Letting \(x = u \) and \(y = v \), again). Also can be written as:
 \(\mathbf{r}(x, y) = (x, y, 4 - x + y) \) for points \((x, y)\) inside the circular region \(x^2 + y^2 \leq 4 \) (which we will do with polar when we get to the integral).

3. \(\mathbf{r}(x, y) = (x, y, x^2 + y^2) \) for points \((x, y)\) inside the region given by \(0 \leq x \leq 1, 0 \leq y \leq x^2 \) (again, we will account for this in the integral later).

4. Notes: This time it is easiest to give \(y \) in terms of \(x \) and \(z \).
 \(\mathbf{r}(x, z) = (x, 9 - x^2 - z^2, z) \) for points \((x, z)\) within the region when \(y \geq 0 \) on the surface. That
 would be when \(9 - x^2 - z^2 \geq 0 \) which would be the circular region \(x^2 + z^2 \leq 9 \).

5. Notes: This is different from the previous cases, because one variable is ‘missing’ from the surface we wish to describe. That means \(z \) can be anything and we should make it one of our parameters. Then we need to find a parameterization for the other two variables. Look to use Sine and Cosine!
 \(\mathbf{r}(u, v) = (2 \cos(u), 2 \sin(u), v) \), (This time, I am letting \(x = 2 \cos(u), y = 2 \sin(u) \) and \(z = v \)).
 We need \(1 \leq v \leq 5 \) from the given condition.
 And we need \(0 \leq u \leq 2\pi \) to go all the way around the cylinder.

6. Notes: This could be done in a couple ways. Here are two different parameterizations:

 (a) We could just get \(z \) in terms of \(x \) and \(y \). That would give \(z = \sqrt{9 - x^2 - y^2} \) for the upper hemisphere. Giving the parameterization
 \(\mathbf{r}(x, y) = (x, y, \sqrt{9 - x^2 - y^2}) \), where \((x, y)\) come from the region that corresponds to \(z \geq 0 \)
 in the surface equation, so \(9 - x^2 - y^2 \geq 0 \), which is the circular region \(x^2 + y^2 \leq 9 \).

 (b) We could use spherical coordinators. Notice that the radius of the sphere, \(\rho = 3 \), is fixed.
 \(\mathbf{r}(\phi, \theta) = (3 \sin \phi \cos \theta, 3 \sin \phi \sin \theta, 3 \cos \phi) \), where \((\phi, \theta)\) satisfy \(0 \leq \phi \leq \pi/2 \) and \(0 \leq \theta \leq 2\pi \).

7. Notes: I would use spherical coordinates here (or break the problem into two parts; upper and lower hemisphere). Again the radius of the sphere, \(\rho = 4 \), is fixed.
 \(\mathbf{r}(\phi, \theta) = (4 \sin \phi \cos \theta, 4 \sin \phi \sin \theta, 4 \cos \phi) \), where \((\phi, \theta)\) would satisfy \(0 \leq \phi \leq \pi \) and \(0 \leq \theta \leq 2\pi \).

8. Notes: For a surface of revolution about the \(x \)-axis, there is a circle of radius \(f(x) \) about each
 value of \(x \). So we can parameterize each of those circles to get
 \(\mathbf{r}(u, v) = (u, f(u) \cos(v), f(u) \sin(v)) \), so I am just replacing \(x = u \) and then parameterizing the circle. The range of values would be \(0 \leq u \leq 2, \) and \(0 \leq v \leq 2\pi \).

9. Here is a parameterization for each side:

 (a) Bottom: \(\mathbf{r}(x, y) = (x, y, 0) \), where \((x, y)\) are in the region \(x^2 + y^2 \leq 1 \).

 (b) Top: \(\mathbf{r}(x, y) = (x, y, 5 - x) \), where \((x, y)\) are in the region \(x^2 + y^2 \leq 1 \).

 (c) Sides: \(\mathbf{r}(u, v) = (\cos(u), \sin(u), v) \), where \((u, v)\) satisfy \(0 \leq u \leq 2\pi \) and \(0 \leq v \leq 5 - \cos(u) \).
 (I got the last bound because \(z \) is always between 0 and \(5 - x \) and in this parameterization \(z = v \) and \(x = \cos(u) \)).
Surface Area

After parameterizing, our next step will be to give an expression for surface area. Way back in 15.6, we already learned that the surface area for a surface parameterized by \(\mathbf{r}(x,y) = \langle x, y, f(x,y) \rangle \) over a region \(D \) is given by \(\iint_D 1 \, dS \), where

\[
dS = |\mathbf{r}_x \times \mathbf{r}_y| \, dA = \sqrt{(f_x)^2 + (f_y)^2 + 1} \, dA.
\]

That was only for those particular parameterizations. But the same general analysis applies. For a parameterization, \(\mathbf{r}(u,v) = \langle x(u,v), y(u,v), z(u,v) \rangle \). We have

\[
\mathbf{r}_u = \langle x_u, y_u, z_u \rangle = \text{a tangent vector to the surface in the } u\text{-direction.}
\]

\[
\mathbf{r}_v = \langle x_v, y_v, z_v \rangle = \text{a tangent vector to the surface in the } u\text{-direction.}
\]

We then get several facts:

1. \(\mathbf{r}_u \) and \(\mathbf{r}_v \) together determine the tangent plane at a given point (because they are both ‘on’ this plane). So \(\mathbf{r}_u \times \mathbf{r}_v \) would be a normal vector for the surface at a given point (and a normal for the tangent plane at that point).

2. If a small change in \(u \) and a small change in \(v \) are made, \(\Delta u \) and \(\Delta v \), respectively, then we can estimate the resulting change in surface area by

\[
\Delta S = |\mathbf{r}_u \times \mathbf{r}_v| \Delta u \Delta v.
\]

As \(\Delta u \) and \(\Delta v \) go to zero, this gets more precise and we write the surface area differential for this relationship as

\[
dS = |\mathbf{r}_u \times \mathbf{r}_v| \, dudv.
\]

3. From 15.6, the surface area of the surface is given by

\[
\text{Surface area} = \iint_D dS = \iint_D |\mathbf{r}_u \times \mathbf{r}_v| \, dA
\]

4. Some shortcuts:

(a) For a parameterization of the form \(\mathbf{r}(x,y) = \langle x, y, f(x,y) \rangle \), we get

\[
\mathbf{r}_x \times \mathbf{r}_y = \langle -f_x, -f_y, 1 \rangle
\]

\[
|\mathbf{r}_x \times \mathbf{r}_y| = \sqrt{(f_x)^2 + (f_y)^2 + 1}
\]

(b) For a parameterization of the form \(\mathbf{r}(\phi, \theta) = \langle a \sin \phi \cos \theta, a \sin \phi \sin \theta, a \cos \phi \rangle \), we get

\[
\mathbf{r}_x \times \mathbf{r}_y = \langle a^2 \sin^2 \phi \cos \theta, a^2 \sin^2 \phi \sin \theta, a^2 \cos^2 \phi \rangle
\]

\[
|\mathbf{r}_\phi \times \mathbf{r}_\theta| = a^2 \sin \phi
\]