Math 324B

FINAL PRACTICE EXAM SOLUTIONS

1. In spherical coordinates the sphere is $\rho=\sqrt{2}$ and the cone is $\rho \cos \phi=\rho \sin \phi$, i.e., $\cos \phi=\sin \phi$, i.e., $\phi=\frac{1}{4} \pi$. Also $x=\rho \sin \phi \cos \theta, z=\rho \cos \phi$, and $d V=$ $\rho^{2} \sin \phi d \rho d \phi d \theta$, so

$$
\iiint_{E} e^{x z} d V=\int_{0}^{2 \pi} \int_{0}^{\pi / 4} \int_{0}^{\sqrt{2}} e^{\rho^{2} \cos \phi \sin \phi \sin \theta} \rho^{2} \sin \phi d \rho d \phi d \theta
$$

2. The iterated integral represents the double integral over the region D between the line $y=2 x$ and the parabola $y=3-x^{2}$, which meet at $(-3,-6)$ and $(1,2)$. So as an iterated integral in the opposite order, it is $\int_{-6}^{2} \int_{-\sqrt{3-y}}^{y / 2} f(x, y) d x d y+\int_{2}^{3} \int_{-\sqrt{3-y}}^{\sqrt{3-y}} f(x, y) d x d y$. (This should be clear if you draw a sketch of D.)
3. The sides of the triangle are the lines $y=0, y=-x$, and $y=x+2$. The inverse transformation of $u=x+y, v=x-y$ is $x=\frac{1}{2}(u+v), y=\frac{1}{2}(u-v)$, so the three lines just described correspond to the lines $u=v, u=0$, and $v=-2$, and the image of D is the triangle with vertices $(0,0),(0,-2)$, and $(-2,-2)$. Also, the Jacobian is

$$
\frac{\partial(x, y)}{\partial(u, v)}=\operatorname{det}\left|\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2}
\end{array}\right|=-\frac{1}{2}
$$

and its absolute value (which is what you need) is $\frac{1}{2}$. Thus

$$
\iint_{D} \cos \frac{\pi(x+y)}{2(x-y)} d A=\int_{-2}^{0} \int_{v}^{0} \cos \frac{\pi u}{2 v} \frac{1}{2} d u d v=\left.\int_{-2}^{0} \frac{v}{\pi} \sin \frac{\pi u}{2 v}\right|_{v} ^{0} d v=-\frac{1}{\pi} \int_{-2}^{0} v d v=\frac{2}{\pi}
$$

4. We have $\operatorname{div} \mathbf{F}=2 x+0+x=3 x$, so by the divergence theorem,

$$
\begin{aligned}
\iint_{S} \mathbf{F} \cdot d \mathbf{S} & =\iiint_{E} 3 x d V=\int_{0}^{6} \int_{0}^{(6-x) / 2} \int_{0}^{(6-x-2 y) / 3} 3 x d z d y d x \\
& =\int_{0}^{6} \int_{0}^{(6-x) / 2}(6-x-2 y) x d y d x=\int_{0}^{6}\left[x(6-x) y-x y^{2}\right]_{0}^{(6-x) / 2} d x \\
& =\int_{0}^{6} \frac{1}{4} x(6-x)^{2} d x=\left[\frac{9}{2} x^{2}-x^{3}+\frac{1}{16} x^{4}\right]_{0}^{6}=162-216+81=27
\end{aligned}
$$

5. (a) curl $\mathbf{F}=\mathbf{0}$ and $\operatorname{div} \mathbf{F}=\frac{1}{2} e^{x / 2}-25 x \cos (3 y+4 z)-2 z$.
(b) Yes, $f(x, y, z)=2 e^{x / 2}+x \sin (3 y+4 z)-\frac{1}{3} z^{3}+c$.
(c) No, because $\operatorname{div} \mathbf{F} \neq 0$.
6. For the integral over C_{1}, use Green's theorem. (The orientation is "wrong," so there's an extra minus sign.) Denoting the region inside the ellipse by D,

$$
\int_{C_{1}}\left(x y d x-x^{2} d y\right)=-\iint_{D}\left[\frac{\partial\left(-x^{2}\right)}{\partial x}-\frac{\partial(x y)}{\partial y}\right] d A=\iint_{D} 3 x d A=0
$$

because $3 x$ is an odd function and D is symmetric about the line $x=0$.
There are a couple of ways to do the integral over C_{2}. You can take y as the parameter (running backwards from 3 to -3); then $x=\frac{2}{3} \sqrt{9-y^{2}}$ and $d x=-\frac{2}{3}\left(y / \sqrt{9-y^{2}}\right) d y$, so

$$
\int_{C}\left(x y d x-x^{2} d y\right)=\int_{3}^{-3} \frac{4}{9}\left[-y^{2}-\left(9-y^{2}\right)\right] d y=\frac{4}{9}(-9)(-6)=24 .
$$

Or, you can you can use trig functions to parametrize, say $x=2 \sin t, y=3 \cos t$, $0 \leq t \leq \pi$ (other variations are possible). Then $d x=2 \cos t d t$ and $d y=-3 \sin t d t$, so

$$
\int_{C}\left(x y d x-x^{2} d y\right)=\int_{0}^{\pi}\left(12 \cos ^{2} t \sin t+12 \sin ^{3} t\right) d t=\int_{0}^{\pi} 12 \sin t d t=-\left.12 \cos t\right|_{0} ^{\pi}=24 .
$$

For the scalar line integral, these two parametrizations give

$$
\int_{C} x d s=\int_{-3}^{3} \frac{2}{3} \sqrt{9-y^{2}} \sqrt{\frac{4 y^{2}}{9\left(9-y^{2}\right)}+1} d y=\int_{0}^{\pi} 3 \sin t \sqrt{4 \cos ^{2} t+9 \sin ^{2} t} d t
$$

(Yes, the second integral is \int_{-3}^{3}. We have $d s=\sqrt{d x^{2}+d y^{2}}$, which equals $\sqrt{(d x / d y)^{2}+1} d y$ only if the increment $d y$ is positive, i.e., y goes from smaller to larger. Otherwise there's a minus sign that compensates for reversing the limits of integration.)
7. The surface is parametrized by $\mathbf{r}(\theta, z)=\sqrt{1+z^{2}}(\cos \theta) \mathbf{i}+\sqrt{1+z^{2}}(\sin \theta) \mathbf{j}+z \mathbf{k}(0 \leq \theta \leq$ $2 \pi, 0 \leq z \leq 1)$, so one calculates that $\mathbf{r}_{\theta} \times \mathbf{r}_{z}=\sqrt{1+z^{2}}(\cos \theta) \mathbf{i}+\sqrt{1+z^{2}}(\sin \theta) \mathbf{j}-z \mathbf{k}=$ $x \mathbf{i}+y \mathbf{j}-z \mathbf{k}$ (with the right orientation: the horizontal part $x \mathbf{i}+y \mathbf{j}$ points outward). Thus $\mathbf{F} \cdot\left(\mathbf{r}_{\theta} \times \mathbf{r}_{z}\right)=x^{2}+y^{2}-z^{2}$, which equals 1 on the surface S, so

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\int_{0}^{1} \int_{0}^{2 \pi} 1 d \theta d z=2 \pi
$$

Also $d S=\left|\mathbf{r}_{\theta} \times \mathbf{r}_{z}\right| d \theta d z=\sqrt{x^{2}+y^{2}+z^{2}} d \theta d z=\sqrt{1+2 z^{2}} d \theta d z$, so

$$
\iint_{S} z d S=\int_{0}^{1} \int_{0}^{2 \pi} z \sqrt{1+2 z^{2}} d \theta d z=\left.2 \pi \cdot \frac{1}{4} \cdot \frac{2}{3}\left(1+2 z^{2}\right)^{3 / 2}\right|_{0} ^{1}=\frac{\pi}{3}\left(3^{3 / 2}-1\right)
$$

8. Use Stokes: a bit of calculation shows that $\operatorname{curl} \mathbf{F}=\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}$ and $\mathbf{r}_{u} \times \mathbf{r}_{v}=-6 u \mathbf{i}+$ $2 u \mathbf{j}+2 \mathbf{k}$ (the correct orientation), so

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}=\int_{0}^{1} \int_{0}^{1}(-2 u+6) d u d v=5 .
$$

