Math 324B
 SECOND PRACTICE EXAM

1. Suppose $w=f(u, v), u=\frac{\tan z}{x^{2}}+2 \ln y$, and $v=(2 x-3 y)^{3}$.
a. Compute $\partial w / \partial x, \partial w / \partial y$, and $\partial w / \partial z$ in terms of the partial derivatives of f.
b. Considering w as a function of x, y, and z, what is its maximum directional derivative at $(x, y, z)=\left(2,1, \frac{1}{4} \pi\right)$, given that $\nabla f\left(\frac{1}{4}, 1\right)=4 \mathbf{i}-\frac{1}{3} \mathbf{j}$? (Note that $(u, v)=\left(\frac{1}{4}, 1\right)$ when $(x, y, z)=\left(2,1, \frac{1}{4} \pi\right)$.)
2. Let $f(x, y, z)=x^{2} y / z+\cos \pi x y+e^{2 x-3 z}$.
a. Compute $\nabla f(x, y, z)$.
b. Find a unit vector \mathbf{u} of the form $\mathbf{u}=a \mathbf{j}+b \mathbf{k}$ such that $D_{\mathbf{u}} f(3,1,2)=0$.
3. Compute $\int_{C}(y / x) d s$ where C is the line segment from $(1,5)$ to $(3,7)$.
4. Compute $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where $\mathbf{F}(x, y)=y \mathbf{i}+2 x \mathbf{j}$ and C is the portion of the curve $x=\cos y$ from $(1,0)$ to $(1,2 \pi)$.
5. Let $\mathbf{F}(x, y, z)=e^{-2 y} \mathbf{i}+\left(z^{3}-2 x e^{-2 y}\right) \mathbf{j}+3(y+1) z^{2} \mathbf{k}$.
a. Find a function f such that $\mathbf{F}=\nabla f$.
b. Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where C is parametrized by $\mathbf{r}(t)=\left(1-t^{4}\right) \mathbf{i}+\left(\sin \pi t^{2}\right) \mathbf{j}+\sqrt{3 t^{3}+1} \mathbf{k}$, $0 \leq t \leq 1$. (Don't do it the hard way!)
6. Let S be the piece of the surface $z=2 x y$ where $x^{2}+y^{2} \leq 4$.
a. Find the area of S.
b. Let $\mathbf{F}(x, y, z)=y \mathbf{i}+x \mathbf{j}+e^{(x+y)^{2}-z} \mathbf{k}$. Evaluate $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$, where S is given the downward orientation. (Hint: The exponential term simplfies.)
