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Final answers and sketches of some solutions for the sample final.
CORRECTIONS made in limits in #3 and last line of answer to #6.

1. (a) Scalar, vector, nonsense, nonsense, vector, scalar. (Note that the last one is the length of
a vector, not a vector.)

(b) Only curl(grad(f)) vanishes no matter what the fields are.

2. Many choices of the parametrizations are possible, but the final answers should be the same
for any choice.

Let C1 be the straight section and C2 the curved section of C. Parametrize C1: 〈t, 0〉,
0 ≤ t ≤ 2. For C2, 〈2cos(t), 2sin(t)〉, −π/2 ≤ t ≤ 0.

(a)
∫
C1
x ds =

∫ 2
0 t dt = ... = 2. On C2, ds = 2dt and

∫
C2
x ds =

∫ 0
−π/2 2 cos(t) 2dt = ... = 4.

So
∫
C x ds =

∫
C1
x ds+

∫
C2
x ds = 6.

(b) dy = 0 on C1, so
∫
C1
x dy = 0 and therefore∫

C
x dy =

∫
C2

x dy =

∫ −π/2
0

2 cos(t)
d

dt
(2 sin(t)) dt = ... = −π

3. (a)
∫ 5
−5

∫ √25−x2
−
√
25−x2

∫ −√x2+y2
−5 (ex + z2) dz dy dx

(b)
∫ 2π
0

∫ 5
0

∫ −r
−5 (er cos(θ) + z2)r dz dr dθ or∫ 2π

0

∫ π
3π/4

∫ −5/ cos(ϕ)
0 (eρ sin(ϕ) cos(θ) + ρ2 cos2(ϕ)))ρ2 sin(ϕ) dρ dϕdθ

4. Many choices of the parametrizations are possible.

(a) r(u, v) = 〈4 cos(v), u, 2 sin(v)〉 for 0 ≤ u ≤ 10 and 0 ≤ v ≤ 2π. Then ru × rv =
〈2 cos(v), 0, 4 sin(v)〉, which points outward and so this parametrization gives the same orien-
tation as the one specified.

(b) For C1, parametrize by 〈4 cos(t), 0, 2 sin(t)〉 with 0 ≤ t ≤ 2π. For C2, just change y from
0 to 10: 〈4 cos(t), 10, 2 sin(t)〉 with 0 ≤ t ≤ 2π. For both of these, the curve starts at a point
in the xy-plane where x > 0 and moves upward (increasing z). For C1, the surface is on the
right when going in this direction, so the parametrization gives the opposite orientation to
the one consistent with the specified one on S. For C2, the surface is on the left when going
in this direction, so this orientation for C2 is consistent with the specified one on S.

5. Choosing a simple parametrization, r(u, v) = 〈1− u2 − v2, u, v〉, with u2 + v2 ≤ 1 and u ≤ v
(an eighth of a unit disk). Then ru × rv = 〈1, 2u, 2v〉, which points away from the origin. So
I’ll have to put a minus sign in front of the integral.

−
∫ 1/

√
2

0

∫ √1−u2
u

〈1− u2 − v2, u, v〉 · 〈1, 2u, 2v〉 dv du = −
∫ 1/

√
2

0

∫ √1−u2
u

(1 + u2) du dv.

Change to polar coordinates to get simpler limits of integration and evaluate to get −3π/16.

By using polar coordinate ideas in the parametrization, you can get the simpler limits more
directly: r(u, v) = 〈1 − u2, u cos(v), u sin(v)〉, with 0 ≤ u ≤ 1 and π/4 ≤ v ≤ π/2. The
orientation is still opposite to the given one. The integral becomes

−
∫ π/2

π/4

∫ 1

0
(u+ u3) du dv

(with of course the same final answer of −3π/16).
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6. Computing directly, you should get 9/2, -17/2, and 1 for the integrals along the three line
segments, for a total integral around C of -3.

OR, notice, in addition to the the hint that you may use a theorem, that the curl of F will
be a constant vector field, so Stokes’s Theorem seems like a good idea. Compute curl(F) =
5i−3j+7k. Fill in C with a planar surface T : it’s a triangle with unit normal n = (i−k)/

√
2

giving the compatible orientation. You can parametrize and integrate as usual, but F · n =
(5− 7)/

√
2 = −

√
2, a constant. So we can compute the integral by multiplying this constant

times the area of T . The perpendicular sides of the triangle have lengths 3 and
√

2, so
altogether we get

∫∫
T F · ndA = −

√
2(3
√

2/2) = −3.

7. (a) The boundary of E is the union of S1 and S2 together, but with the reversed orientation
on S2 (because “downward” is “outward” on the bottom). Therefore the Divergence Theorem
tells us that ∫∫∫

E
div(F)dV =

∫∫
S1

F · dS−
∫∫

S2

F · dS

(where the integrals over S1 and S2 mean with the original orientations of those surfaces).
Adding the integral over S2 to both sides gives us the desired result.

(b) Use part (a). Compute div(F) = 2, so
∫∫∫

E div(F)dV = 2(volume of hemisphere of
radius 3) = 36π (using remembered formula for the volume of a sphere, or computing using
spherical coordinates). On S2, the unit normal is k, so we only need the k-component
of F, which is x + z = x on S2. By symmetry (or calculation),

∫∫
S2
x dx dy = 0. So∫∫

S1
F · dS = 36π + 0 = 36π.

Final answers and sketches of some solutions for the additional review problems:

1. (a) Compute the curl of each vector field. For F, it’s the zero vector field. As F and the partials
of its components are defined on all of space, we know that F is conservative. A potential

function is given by f(x, y, z) =
x2

2
+y+xz. (It’s a good idea to check by computing grad(f)

and make sure it gives you F back again.)

The curl G = 〈0, 0,−2〉 is not zero, so G is not conservative. (If you made a sign error
and thought the curl was zero, then you should discover your error when you try to find the
potential function: you won’t be able to solve the equations, or if you think you do, when
you compute the gradient you won’t get G.)

(b)
∫
C F · dr = f(4, 2, 20)− f(0, 0, 0) = ... = 90

(Or, compute using the parametrization below.)

To get a parametrization of C, notice that the first equation gives z in terms of x and y, and
the second gives x in terms of y. So let r(t) = 〈2t, t, 5t2〉, with 0 ≤ t ≤ 2. Then compute∫
C G · dr = ... = e20 − 1.

2. (a) ∇g = 〈z2, 1, 2xz〉, so ∇g(r(5)) = 〈9, 1, 12〉.
h′(5) = ∇g(r(5)) · r′(5) = 〈9, 1, 12〉 · 〈−1, π, 2〉 = 15 + π

(b) 9x+ y + 12z = 47

(c) We want u = 〈a, b, c〉 so that 0 = ∇g(2,−7, 3) · u = 9a + b + 12c. One answer is

u =
〈1, 3,−1〉√

11
. (Technically, “direction” means unit vector; one may also say “in the direction

of 〈1, 3,−1〉.” But I’m not very concerned about this technicality.)
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3. (a) r(u, v) = 〈u, v2, v〉 with u2 + v2 ≤ 4, is the easiest one to write down.

r(u, v) = 〈u cos(v), u2 sin2(v), u sin(v)〉 with 0 ≤ u ≤ 2, 0 ≤ v ≤ 2π also works.

For both of these, ru×rv has negative j component, so the orientation give by the parametriza-
tion is opposite to the specified orientation.

(b) I’ll use q(t) for the curve, because we’re already using r for the surface:
q(t) = 〈2 cos(t), 4 sin2(t), 2 sin(t)〉, for 0 ≤ t ≤ 2π.

The orientation consistent with the given orientation of S is counterclockwise as viewed from
the positive y-axis, which is opposite to the orientation of the parametrization q.

(c) Using Stokes’ Theorem,∫∫
S
∇× F · dS = −

∫ 2π

0
F(q(t)) · q′(t)dt = ... = 8π.

(The minus sign in front of the integral comes from orientation discussion in part (b).)

4. (a) f(x, y, z) = 2z is constant around each horizontal circular cross-section. The length of
such a cross-section is 6π, so the surface integral is equal to 6π

∫ 5
0 2zdz = 150π.

(b) doesn’t make sense, because we can’t take a dot product of a scalar function with the
vector dS = ndS.

(c) This integral is the flux of F through S. But F is constant, so the flux in one side of S is
equal to the flux out the other side. Thus the integral is zero.

Same idea, described slightly differently: By symmetry of S, we have F · n with the same
magnitude and opposite sign at the points (a, b, c) and (−a,−b, c) in S, so the integral will
be zero.

I didn’t ask you about the fourth variation,
∫∫
S FdS. This expression “makes sense,” its

meaning is to compute the integral of each of the components of F, resulting in three numbers
that are the components of a single vector. But it’s not a type of calculation we’ve done,
because it’s not a concept that is particularly useful.


