Solutions. The solutions below for the exam problems refer to pictures on the green handout given out in class on 10/19/11. There are some extra copies outside my office, PDL C338 (in a bin on the wall next to the door).

Problem 1. (a) $\int_{0}^{2} \int_{0}^{x^{2}} f(x, y) d y d x$. (See picture on green handout.)
(b) $\bar{x}=\frac{1}{m} \iint_{D} x k e^{y} d A=\frac{k}{m} \iint_{D} x e^{y} d A$. The integral is easiest using the set up from part (a):

$$
\int_{0}^{2} \int_{0}^{x^{2}} x e^{y} d y d x=\left.\int_{0}^{2} x e^{y}\right|_{y=0} ^{y=x^{2}} d x=\int_{0}^{2} x\left(e^{x^{2}}-1\right) d x=\frac{e^{x^{2}}}{2}-\left.\frac{x^{2}}{2}\right|_{0} ^{2}=\frac{e^{4}-5}{2}
$$

(It can also be done in the original order:

$$
\int_{0}^{4} \int_{\sqrt{y}}^{2} x e^{y} d x d y=\left.\int_{0}^{4} \frac{x^{2}}{2} e^{y}\right|_{x=\sqrt{y}} ^{y=2} d y=\int_{0}^{4}\left(2 e^{y}-\frac{y e^{y}}{2}\right) d y=2 e^{y}-\frac{y e^{y}}{2}+\left.\frac{e^{y}}{2}\right|_{0} ^{4}=\frac{e^{4}-5}{2}
$$

using integration by parts to get $\int y e^{y} d y=y e^{y}-e^{y}+C$.) Either way, $\bar{x}=\frac{k\left(e^{4}-5\right)}{2 m}$.
Problem 2. See picture on handout. If you don't know the polar equation for this circle, find it as follows. The $x y$-equation for the circle is $(x-2)^{2}+y^{2}=4$, or $x^{2}+y^{2}=4 x$, so $r^{2}=4 r \cos \theta$, or $r=4 \cos \theta$.

$$
\int_{\pi / 4}^{\pi / 2} \int_{0}^{4 \cos \theta} \frac{k}{r} r d r d \theta=\left.k \int_{\pi / 4}^{\pi / 2} r\right|_{r=0} ^{r=4 \cos \theta} d \theta=4 k \int_{\pi / 4}^{\pi / 2} \cos \theta d \theta=\left.4 k \sin \theta\right|_{\pi / 4} ^{\pi / 2}=4 k\left(1-\frac{1}{\sqrt{2}}\right)
$$

(It's not too hard to set up the integral for this mass in $x y$-coordinates but the integrand is $\left(x^{2}+y^{2}\right)^{-1 / 2}$, which is rather complicated to integrate.)

Problem 3. (a) I'm giving a detailed explanation of how to find the limits - more than was required for full credit - because this problem seemed to be the hardest one on the test.

To find the limits y and z, look at region D in the $y z$-plane which is the projection of the region E to this plane and is bounded by $y=z, y^{2}+z^{2}=1$, and the y-axis. (See picture of D on handout.) In D, the largest value of z occurs where the surfaces $y=z$ and $y^{2}+z^{2}=1$ intersect, so we get $2 z^{2}=1$, or $z=1 / \sqrt{2}$, and the lower limit for z is 0 . Still considering D, for fixed z, the lowest value of y occurs on $y=z$ and the highest value on the circle $y^{2}+z^{2}=1$. Finally, for the limits for x we must think about the three dimensional region E, pictured on the handout. For any point (y, z) in D, the x values are bounded below by the $y z$-plane, and bounded above by the sphere. Putting all this together, we get

$$
\int_{0}^{1 / \sqrt{2}} \int_{z}^{\sqrt{1-z^{2}}} \int_{0}^{\sqrt{1-z^{2}-y^{2}}} f(x, y, z) d x d y d z
$$

Originally, I was going to give you this iterated integral, and ask you to rewrite it as an iterated integral with respect to $d y d z d x$. Try this, and for even more practice, try several other orders of integration; answers for all but one at the end of this document.
(b) If we integrate first with respect to z, then we have to set limits for z for each choice of (x, y) possible in E. The lower limit for z is always 0 , but the upper limit is on the sphere some places and on the plane $y=z$ others. We can see this even just looking at the intersection of E with the $y z$-plane, which happens to be the same as the projection onto the $y z$-plane in this example: for $x=0$ and $y \leq 1 / \sqrt{2}$, the upper bound is $z=y$, and for $x=0$ and larger y it's $z=\sqrt{1-y^{2}}$. More precisely, we have an upper limit of $z=y$ in region R_{1} in the $x y$-plane (see picture on handout) and an upper limit $z=\sqrt{1-x^{2}-y^{2}}$ in region R_{2}.

Problem 4. The sphere $x^{2}+y^{2}+z^{2}=2 z$ is centered at $z=1$ on the z-axis and has radius 1. (On the handout there is a picture of the cross section of the two spheres.) In spherical coordinates, it's

$$
\rho^{2}=x^{2}+y^{2}+z^{2}=2 z=2 \rho \cos \phi,
$$

and we can safely cancel one factor of ρ, because the origin remains a solution of the resulting equation $\rho=2 \cos \phi$.

Next we find the ρ-coordinate where the spheres intersect. The other sphere has the equation $\rho=1$, so they intersect where $\rho=1=2 \cos \phi$. This implies $\phi=\pi / 3$. Thus the integral is

$$
\int_{0}^{2 \pi} \int_{0}^{\pi / 3} \int_{1}^{2 \cos \phi} \rho^{2} \sin \phi d \rho d \phi d \theta
$$

(You can change the order of integration by putting $d \theta$ last, first, or in the middle, but must put $d \rho$ before $d \phi$ unless you want to deal with very messy limits of integration.)

I was going to ask you to compute the volume, but deleted that question because of time. In case you want to try it for practice, here's the final answer: $\frac{11}{12} \pi$.

Problem 5. By the change of variable formula in $\S 15.9$,

$$
\iint_{R}\left(\left(\frac{x}{2}\right)^{2}+\left(\frac{y}{3}\right)^{2}\right) d A=\iint_{S}\left(\left(\frac{2 u}{2}\right)^{2}+\left(\frac{3 v}{3}\right)^{2}\right)\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d A
$$

where we need to figure out what region S is in the $u v$-plane and compute the Jacobian. Substituing, we find S is bounded by

$$
1=\left(\frac{x}{2}\right)^{2}+\left(\frac{y}{3}\right)^{2}=\left(\frac{2 u}{2}\right)^{2}+\left(\frac{3 v}{3}\right)^{2}=u^{2}+v^{2}
$$

so S is the interior of the unit circle centered at the origin. Pictures of R and S are on the handout. Because they are different regions, you should not use the same letter for both of them! The Jacobian is

$$
\frac{\partial(x, y)}{\partial(u, v)}=\left(\begin{array}{ll}
\partial x / \partial u & \partial x / \partial v \\
\partial y / \partial u & \partial y / \partial v
\end{array}\right)=\left(\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right)=6
$$

Because the transformation is so simple, I did not require that you show the matrix. If you just wrote that $d A=\frac{\partial x}{\partial u} \frac{\partial y}{\partial v}$, be sure you know how to handle cases where none of the entries in the matrix are zero.

To do the integral on S in the $u v$-plane, it is easiest to use polar coordinates:

$$
\iint_{S}\left(u^{2}+v^{2}\right) 6 d u d v=\int_{0}^{2 \pi} \int_{0}^{1} r^{2} r d r d \theta=6 \int_{0}^{2 \pi} d \theta \int_{0}^{1} r^{3} d r=\left.12 \pi \frac{r^{4}}{4}\right|_{0} ^{1}=3 \pi
$$

Other orders of integration for $\# 3$.

$$
\begin{gathered}
\int_{0}^{1 / \sqrt{2}} \int_{0}^{y} \int_{0}^{\sqrt{1-z^{2}-y^{2}}} f(x, y, z) d x d z d y+\int_{1 / \sqrt{2}}^{1} \int_{0}^{\sqrt{1-y^{2}}} \int_{0}^{\sqrt{1-z^{2}-y^{2}}} f(x, y, z) d x d z d y \\
\int_{0}^{1} \int_{0}^{\sqrt{\left(1-x^{2}\right) / 2}} \int_{z}^{\sqrt{1-x^{2}-z^{2}}} f(x, y, z) d y d z d x \\
\int_{0}^{1 / \sqrt{2}} \int_{0}^{\sqrt{1-2 z^{2}}} \int_{z}^{\sqrt{1-x^{2}-y^{2}}} f(x, y, z) d y d x d z \\
\int_{0}^{1} \int_{0}^{\sqrt{\left(1-x^{2}\right) / 2}} \int_{z}^{y} f(x, y, z) d z d y d x+\int_{0}^{1} \int_{\sqrt{\left(1-x^{2}\right) / 2}}^{\sqrt{1-x^{2}}} \int_{z}^{\sqrt{1-x^{2}-y^{2}}} f(x, y, z) d z d y d x
\end{gathered}
$$

The remaining possibility would have to be written as a sum of three integrals; can you see why?

