Your Name:

Problem	Points	Possible
1		11
2		10
3		11
4		8
5		50
Total		

- Turn off and put away cell phones, graphing calculators, books, and notebooks.
- You may use one $8 \frac{1}{2} \times 11$ sheet of handwritten notes and a non-graphing calculator. Do not share notes or calculators.
- In order to receive credit, you must show your work and explain your reasoning, and give exact answers (unless the problem instructs otherwise). You do not have to simplify answers algebraically.
- Raise your hand if you have a question or need more paper.

Please do not open the test until everyone has a copy and the start of the

 test is announced.1. (11 points total) Suppose $\iint_{D} f(x, y) d A=\int_{0}^{4} \int_{\sqrt{y}}^{2} f(x, y) d x d y$.
(a) (4 points) Reverse the order of integration in the double integral.
(b) (7 points) Suppose a thin plate with mass density $\rho=k e^{y}$ occupies the region D, and has total mass m. Find the x-coordinate of the center of mass of the plate. (Your answer will be in terms of k and m.)
2. (10 points) A thin plate occupies the region D that lies above the line $y=x$ and inside the circle of radius 2 centered at $(2,0)$. The mass density of the plate is inversely proportional to distance from the origin (that is, the density $=k / r)$. Find the total mass of the plate. (Your answer will be in terms of k.)
3. (11 points total) Let E be the region in the first octant (that is, $x, y, z \geq 0$) that is inside the sphere $x^{2}+y^{2}+z^{2}=1$ and below the plane $z=y$.
(a) (8 points) Write $\iiint_{E} f(x, y, z) d V$ as an iterated integral with respect to $d x d y d z$ (in that order).
(b) (3 points) Explain why it probably would not be a good idea to integrate with respect to z first in the integral in part (a). Make specific use of one or more of the bounding surfaces of E in your explanation.
4. (10 points) Set up an integral in spherical coordinates for the volume of the region that is outside the sphere $x^{2}+y^{2}+z^{2}=1$ and inside the sphere $x^{2}+y^{2}+z^{2}=2 z$. Note that you are not asked to evaluate the integral.
5. (8 points) Let R be the region in the $x y$-plane that is bounded by the ellipse

$$
\left(\frac{x}{2}\right)^{2}+\left(\frac{y}{3}\right)^{2}=1
$$

Use the change of coordinates $2 u=x$ and $3 v=y$ to evaluate the following integral.

$$
\iint_{R}\left(\left(\frac{x}{2}\right)^{2}+\left(\frac{y}{3}\right)^{2}\right) d A
$$

