1. (a) Choose \(x \in (A \cup C) - B \). Then \(x \in A \cup C \) but \(x \notin B \). Since \(x \in A \cup C \), \(x \in A \) or \(x \in C \). If \(x \in A \), then we have that \(x \in A \) but \(x \notin B \), which means that \(x \in A - B \), which is a subset of \((A - B) \cup C \). If \(x \notin A \), then \(x \) must be in \(C \), which means that \(x \in (A - B) \cup C \). Thus, every element of \((A \cup C) - B \) is also in \((A - B) \cup C \), which means that \((A \cup C) - B \subseteq (A - B) \cup C \).

(b) As long as \(B \cap C \) is non-empty, equality will not hold. One example is \(A = \{1, 2, 3\} \), \(B = \{1, 2\} \), and \(C = \{2, 3, 4\} \). Then, \((A \cup C) - B = \{4\} \) but \((A - B) \cup C = \{2, 3, 4\} \).

2. (a) The negation is: There exists an \(x \in \mathbb{R} \) such that, for all \(y \in \mathbb{R} \), \(x + y \notin \mathbb{Z} \).

(b) The negation is: For all \(x \in \mathbb{Z} \), there exists \(y \in \mathbb{Z} \) such that \(x > y \) and \(\frac{x^2}{y} \notin \mathbb{N} \).

3. By hypothesis, \(a \) is divisible by \(3 \). Suppose that \(a + b \) is also divisible by \(3 \). Then \(a + b = 3k \) for some integer \(k \) and \(a = 3k' \) for some integer \(k' \). So, \(3k = a + b = 3k' + b \), which implies that \(b = 3(k - k') \). The integers are closed under subtraction, which means that \(k - k' \) is also an integer. Thus, \(b \) is divisible by \(3 \). We’ve shown that, if \(a + b \) is divisible by \(3 \), then \(b \) must also be divisible by \(3 \). Thus, the contrapositive is true: if \(b \) is not divisible by \(3 \), then \(a + b \) is not divisible by \(3 \).

4. Base case: If \(n = 1 \), then \((1 + x)^n = 1 + x \) and \(1 + 1 \cdot x = 1 + x \) and thus the conclusion is true.

Induction step: Suppose that \((1 + x)^k \geq 1 + kx \) for some natural number \(k \). We want to show that \((1 + x)^{k+1} \geq 1 + (k+1)x \). We start with the left-hand side: \((1 + x)^{k+1} = (1 + x)(1 + x)^k \geq (1 + kx)(1 + x) \), by the induction hypothesis. We now have that \((1 + x)^{k+1} \geq 1 + kx + x + kx^2 \), which in turn is greater than or equal to \(1 + kx + x \), since \(kx^2 \geq 0 \). Thus, \((1 + x)^{k+1} \geq 1 + (k + 1)x \), which completes the induction step.

We’ve shown that \((1 + x)^n \geq 1 + nx \) for all natural numbers \(n \).

5. \(f(x) \) is injective: Suppose \(f(x_1) = f(x_2) \). Then
\[
\frac{x_1 + 1}{x_1 - 1} = \frac{x_2 + 1}{x_2 - 1}
\]
If we multiply both sides by \((x_1 - 1)(x_2 - 1) \) to eliminate the denominators, we get:
\[
(x_2 - 1)(x_1 + 1) = (x_2 + 1)(x_1 - 1)
\]
Multiply out and combine like terms to see that \(x_1 = x_2 \).

\(f(x) \) is not onto: There is no \(x \) such that \(f(x) = 1 \). If such an \(x \) did exist, then
\[
\frac{x + 1}{x - 1} = 1
\]
This would mean that \(x + 1 = x - 1 \), which would imply that \(1 = -1 \). This is a contradiction. Thus, there is an element of the target, \(1 \in \mathbb{R} \), that is not in the image of \(f \).

Since \(f(x) \) is not onto, \(f(x) \) is not a bijection.