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1. (10 total points)

(a) (5 points) Find the general solution to the following second-order differential equation:

3y′′+2y′− y = 4e−t cos(t)+2e−t .

The characteristic equation of the homogeneous part of the DE is 3r2 + 2r− 1 = 0; this has
solutions r1 =−1 and r2 =

1
3 ; hence the general solution to the homogeneous part of the equation

is
y = c1e−t + c2e

1
3 t .

To find the particular solution, we break up the forcing function into its two constituent terms
and find the particular solutions for each individually. Specifically, to find the particular solution
to 3y′′+2y′− y = 4e−t cos(t) we guess

Y1(t) = e−t (Acos(t)+Bsin(t)) ,

since we’ll also need sine terms to balance coefficients. Then we have

Y ′1 = e−t ((−A+B)cos(t)+(−A−B)sin(t)) and Y ′′1 = e−t ((−2B)cos(t)+(2A)sin(t)) ,

so

4e−t cos(t) = 3Y ′′1 +2Y ′1−Y1

= e−t ((−6B−2A+2B−A)cos(t)+(6A−2A−2B−B)sin(t))

= e−t ((−3A−4B)cos(t)+(4A−3B)sin(t)) .

Thus we have the system of equations −3A− 4B = 4 and 4A− 3B = 0, which has the solution
A =−12

25 ,B =−16
25 . The particular solution to this part is therefore

Y1(t) = e−t
(
−12

25
cos(t)− 16

25
sin(t)

)
.

Now let Y2(t) be the particular solution to the 2nd part of the nonhomogeneous equation,
namely 3y′′+2y′− y = 2e−t . Since e−t is already a solution to the homogeneous DE, we guess
Y2(t) = Ate−t . Then Y ′2 = (−At +A)e−t and Y ′′2 = (At−2A)e−t , so

2e−t = 3Y ′′2 +2Y ′2−Y2 = 3(At−2A)e−t +2(−At +A)e−t−Ate−t

=−4Ae−t .

Equating coefficients therefore has 2 = −4A, so A = −1
2 . The particular solution to this part

is thus Y2 = −1
2te−t . Finally, we combine the two particular solutions and the homogeneous

solution to get the full general solution to the nonhomogeneous differential equation:

y = c1e−t + c2e
1
3 t + e−t

(
−12

25
cos(t)− 16

25
sin(t)

)
− 1

2
te−t .
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(b) (5 points) Find the solution y = φ(t) to the following initial value problem.

4y′′+ y = 2cos(t) y(0) = 0, y′(0) = 1.

The characteristic equation of the homogeneous part of the DE is 4r2 +1 = 0; this has solutions
r =±1

2 i; hence the general solution to the homogeneous part of the equation is

y = c1 cos
(

1
2

t
)
+ c2 sin

(
1
2

t
)
.

For the particular solution to the full nonhomogenous DE, we would ordinarily guess Y (t) =
Acos(t)+Bsin(t); however, since the homogeneous part of the DE has no y′ term we don’t need
the sine part in our guess in order to balance coefficients. Thus we guess Y = Acos(t). We then
have Y ′′ =−Acos(t), so

2cos(t) = 4Y ′′+Y =−4Acos(t)+Acos(t) =−3Acos(t),

so we must have 2 =−3A, i.e. A =−2
3 . The particular solution is then

Y =−2
3

cos(t),

and so the full general solution to the differential equation is

y = c1 cos
(

1
2

t
)
+ c2 sin

(
1
2

t
)
− 2

3
cos(t).
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2. (10 total points) Consider the initial value problem

(α−2)y′′+(3α)y′+(2α +1)y = 0, y(0) = 1,y′(0) = 0

for a given constant α .

(a) (5 points) Find the values of α for which the solution to the IVP exhibits oscillatory behavior.
For which values will the solution’s oscillations be damped, constant in amplitude or exponen-
tially growing?

The characteristic equation corresponding to this differential equation is

(α−2)r2 +(3α)r+(2α +1) = 0.

The solution will exhibit oscillatory behavior if the CE has complex roots, which in turn happens
when the discriminant (‘b2−4ac’) is negative. Thus to get an oscillating solution to the DE we
require

(3α)2−4(α−2)(2α +1)< 0,

or, after simplifying, α2 + 12α + 8 < 0. Now α2 + 12α + 8 is a quadratic in α with positive
coefficient in front of the α2 term, so it will be negative between its two roots. The quadratic
formula yields α2 +12α +8 = 0 when α = −6±2

√
7. We therefore have that the DE exhibits

oscillatory behavior for
−6−2

√
7 < α <−2+2

√
7,

or −11.292 < α <−0.708.

Finally, for these values of α both the coefficients in front of the y′′ and the y′ term (α−2 and 3α

respectively) are negative; thus the CE has roots whose real parts (‘−b
a ’) are negative. This trans-

lates into a general solution with sine and cosine terms multiplied by an exponentially decaying
term. That is, the solution will be damped for all α for which the solution exhibits oscillatory
behavior.
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(b) (5 points) Let α be the value which maximizes the solution’s quasi-frequency, and let y(t) be
the solution to the IVP for this value of α . Find a time t0 beyond which the amplitude of y never
exceeds 0.1, i.e. for which |y(t)| ≤ 0.1 for all t > t0.

The solution’s quasi frequency is maximized when the characteristic equation has roots with
imaginary parts of maximum magnitude. This in turn happens when the discriminant α2 +
12α + 8 is the most negative. This of course happens at the turning point of the quadratic,
i.e. α = − 12

2·1 = −6. Hence the fastest oscillation happens for α = 6. The DE then becomes
−8y′′−18y′−11y = 0. After multiplying the whole equation by −1 we arrive at the IVP

8y′′+18y′+11y = 0, y(0) = 1,y′(0) = 0.

To find out when the amplitude of the solution decays to less than 0.1, we will write the solution
in the form y = Re−ct cos(ωt−δ ) for constants R,c,ω and δ , as then we know that the solution
is at most Re−ct in magnitude The characteristic equation is 8r2 +18r+11 = 0, which has roots
r =−9

8 ±
√

7
8 · i, so the solution to this DE can be written in the form

y = e−
9
8 t

(
Acos

(√
7

8
t

)
+Bsin

(√
7

8
t

))

Using the initial value y(0) = 1 gives us A = 1, while the second initial value y′(0) = 0 gives us
−9

8A+
√

7
8 B = 0, so B = 9√

7
.

Now recall that to convert the solution to the form y = Re−ct cos(ωt−δ ) we use R =
√

A2 +B2,
so

R =

√
12 +

(
9√
7

)2

=

√
88
7

= 2

√
22
7

= 3.5256.

We therefore know that at time t the solution is at most 2
√

22
7 e−

9
8 t in magnitude. To find a time

beyond which the solution is always less than 1
10 in magnitude, we solve for t in the equation

1
10

= 2

√
22
7

e−
9
8 t.

Squaring both sides we get 1
100 = 88

7 e−
9
4 t. Solving for t yields

t =
4
9

ln
(

8800
7

)
= 3.1718.

We conclude that for α =−6, the solution damps to magnitude less than 0.1 after t = 3.1718.
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3. (10 total points) A certain vibrating system satisfies the differential equation

0.5y′′+0.1y′+2y = 3cos(ω0t)

where ω0 is the natural frequency of the system.

(a) (5 points) Compute the amplitude of the system’s steady-state solution.

There are two ways to approach solving this question. One way is to solve the equation fully and
write the steady-state solution in the form y = Rcos(ωt−δ ) for constants R,ω and δ . However,
we’ve done the full general case in class, and it’s perfectly okay to just quote the formula for R
in terms of the coefficients in the DE. To that effect, given the DE my′′+ γy′+ ky = F0 cos(ω t),
we found in class that

R =
F0√

(k−mω2)2 + γ2ω2
.

We have m = 1
2 , γ = 1

10 , k = 2 and F0 = 3. Furthermore we know that for us ω = ω0 =
√

k
m = 2.

Hence
R =

3√
(2− 1

2 ·22)2 +
( 1

10

)2 ·22
=

3√
0+ 1

25

= 15.

That is, the amplitude of the steady-state respond in this example is R = 15.

(b) (5 points) Suppose the forcing function’s frequency is doubled to 2ω0, but everything else re-
mains the same. What does the amplitude of the steady-state solution now become?

Same setup as above, but now ω = 4. Thusly:

R =
3√

(2− 1
2 ·42)2 +

( 1
10

)2 ·42
=

3√
36+ 4

25

=
15

2
√

226
= 0.4989.

So the steady-state solution’s amplitude is now much smaller, at R = 0.4989.
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4. (10 total points) A series circuit contains a capacitor of 6.4× 10−4 F and an inductor of 10 H.
Resistance in the circuit is negligible, and the charge on the capacitor and the current in the circuit are
both initially zero. At time t = 0 an external voltage is applied to the circuit of 125cos(15t) volts.

(a) (6 points) Formulate and solve an initial value problem using the above data to determine the
charge on the capacitor at time t.

We use the series circuit differential equation that we developed in class, i.e.

LQ′′+RQ′+
1
C

Q = E(t),

where for us L = 10, R = 0, 1/C = 1/(6.4× 10−4) = 3125
2 and E(t) = 125cos(15 t). Hence we

have the initial value problem

10Q′′+
3125

2
Q = 125cos(15 t), Q(0) = 0,Q′(0) = 0.

This is precisely the case where we get beats. Checking our notes from class we see that for the
initial value problem my′′+ ky = F0 cos(ω t), y(0) = y′(0) = 0, we can write the solution as

y =
[

2F0

m(ω2
0 −ω2)

sin
(

1
2
(ω0−ω)t

)]
sin
(

1
2
(ω0 +ω)t

)
,

where ω0 =
√

k
m is the system’s natural frequency. For us ω0 =

√
3125/2

10 = 25
2 = 12.5.

Furthermore for us F0 = 125, m = 10, ω2
0 −ω2 =

(25
2

)2− 152 = −275
4 , 1

2(ω0−ω) = −5
4 and

1
2(ω0 +ω) = 55

4 . Hence

Q =

[
2 ·125

10 ·−275
4

sin
(
−5

4
t
)]

sin
(

55
4

t
)
=

4
11

sin
(

5
4

t
)

sin
(

55
4

t
)
.

If you prefer decimals, the solution can be written as

Q = 0.3636 sin(1.25 t)sin(13.75 t).

(b) (4 points) The capacitor is rated to sustain a maximum charge of 0.5 Coulombs. Is this circuit
safe given the above setup, or will it burn out?

This answer is straightforward given the way that we’ve written the solution above. Since both the
sine terms never exceed 1 in magnitude, we see that the solution never exceeds 4

11 in magnitude
at any given point in time. Since this is less than 1

2 , we conclude that the circuit is safe, and will
not burn out.
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5. (10 points) (10 total points) An object of unknown mass is placed on a flat surface and attached to
a horizontal spring with spring constant 2.5 kg/s2. The damping constant in the system is precisely
1 kg/s. The object is stretched 1 meter to the right of its equilibrium position and released with zero
initial velocity. The damped oscillations of its subsequent motion are observed to have a quasi-period
of 20

7 π seconds.

What is the mass of the object?

Here we have the initial value problem

my′′+ y′+
5
2

y = 0, y(0) = 1, y′(0) = 0.

The corresponding characteristic equation is

mr2 + r+
5
2
= 0,

with roots

r =
−1±

√
12−4 ·m ·5/2

2m
=
−1
2m
± 1

2m

√
1−10m.

We are told the solution exhibits oscillatory behavior, so the thing under the square root sign must be
negative. Hence the roots to the CE can be written as

−1
2m
±
√

10m−1
2m

· i.

This means the solution will contain sine and cosine terms with radial quasi-frequency ω , where
ω =

√
10m−1
2m .

On the other hand, if T is the quasi-period, then ω = 2π

T ; hence

ω =
2π

20
7 π

=
7

10
.

Thus we must have that
√

10m−1
2m = 7

10 . It now remains to solve for m. Cross-multiplying to clear
denominators we get

5
√

10m−1 = 7m,

so after squaring both sides we have 25(10m−1) = 49m2, or

49m2−250m+25 = 0.

This quadratic has the solutions m = 5 or m = 5
49 .

Going back to our original differential equation, we see that 5 and 5
49 are both valid (non-negative)

values for the object’s mass such that the quasi-frequency of the solution’s oscillations is 7
10 . We

therefore conclude that either m = 5 kg or m = 5
49 kg, and that there is no way beyond this to tell given

the problem setup.


