Practice Midterm 2 Answers

1. Solve the IVP

$$
\begin{aligned}
y^{\prime \prime}-4 y^{\prime}+4 y & =e^{2 t} \cos (3 t)+4 \\
y(0) & =0 \\
y^{\prime}(0) & =0 .
\end{aligned}
$$

Homogeneous solution: $y_{c}(t)=c_{1} e^{2 t}+c_{2} t e^{2 t}$
Particular solution format: $Y(t)=A e^{2 t} \cos (3 t)+B e^{2 t} \sin (3 t)+C$
Particular solution: $Y(t)=-\frac{1}{9} e^{2 t} \cos (3 t)+1$
General solution: $u(t)=c_{1} e^{2 t}+c_{2} t e^{2 t}-\frac{1}{9} e^{2 t} \cos (3 t)+1$
Solution to IVP: $u(t)=-\frac{8}{9} e^{2 t}+2 t e^{2 t}-\frac{1}{9} e^{2 t} \cos (3 t)+1$.
2. An object weighing 96 lb is attached to a spring, stretching it 2 feet. Assume there is no damping, and that an external force $F(t)=3 \sin (4 t)-\cos (4 t)$ is applied to the object. At time $t=0$, you push the object 3 feet upward from equilibrium position and give it an initial velocity of $1 \mathrm{ft} / \mathrm{s}$ downward. Find the position of the object at time t.
(Recall $g=32 \mathrm{ft} / \mathrm{s}^{2}$).
Solutions:
Equation: $3 u^{\prime \prime}+48 u=3 \sin (4 t)-\cos (4 t)$
Homogeneous solution: $y_{c}(t)=c_{1} \cos (4 t)+c_{2} \sin (4 t)$
Particular solution format: $Y(t)=A t \cos (4 t)+B t \cos (4 t)$
Particular solution: $Y(t)=-\frac{1}{8} t \cos (4 t)-\frac{1}{24} t \sin (4 t)$
General solution: $u(t)=-\frac{1}{8} t \cos (4 t)-\frac{1}{24} t \sin (4 t)+c_{1} \cos (4 t)+c_{2} \sin (4 t)$.
Solution to IVP: $u(t)=-\frac{1}{8} t \cos (4 t)-\frac{1}{24} t \sin (4 t)-3 \cos (4 t)+\frac{9}{32} \sin (4 t)$. (correction)
3. A 10 kg rock is attached to a spring, stretching it 2 meters.
(a) For this part only, assume there is no damping, and no external force. If at $t=0$ the spring is stretched downward by 2 m and the rock is released with initial velocity $7 \mathrm{~m} / \mathrm{s}$ upward, find the period, amplitude, and phase of the motion (Your answer for the phase may involve a trigonometric function).
(b) Now assume there is damping, and that the magnitude of the damping force is 12 N when the object is traveling at $2 \mathrm{~m} / \mathrm{s}$. Find the quasi-period of the motion.
(c) How large does the damping force need to be for the system to be critically damped?

Solutions:
(a) Initial value problem: $10 u^{\prime \prime}+49 u=0, u(0)=2, u^{\prime}(0)=-7$

Solution: $u=2 \cos (7 / \sqrt{10} t)-\sqrt{10} \sin (7 / \sqrt{10} t)$
Amplitude: $A=\sqrt{14}$
Phase: $\delta=\tan ^{-1}(-\sqrt{10} / 2)$ (correction)
Period: $T=2 \pi \sqrt{10} / 7$
(b) $O D E: 10 u^{\prime \prime}+6 u^{\prime}+49 u=0$.

Quasiperiod: $\mu=\sqrt{1924} / 20=\sqrt{481} / 10$.
(c) We would need $\gamma=14 \sqrt{10}$, which corresponds to a damping force of $28 \sqrt{10} N$ at a velocity of $2 \mathrm{~m} / \mathrm{s}$.
4. Given that $y_{1}(t)=1 / t$ is a solution to the following equation, find another solution:

$$
t^{2} y^{\prime \prime}+3 t y^{\prime}+y=0, \quad t>0
$$

One possible answer: $y_{2}(t)=\frac{\ln t}{t}$. The general solution is $y(t)=\frac{C}{t}+\frac{D \ln t}{t}$.

