Information you'll have for the final:

Table of Laplace Transforms

f	$\mathcal{L}[f]$	f	$\mathcal{L}[f]$
1	$\frac{1}{s}$	cos bt	$\frac{s}{s^2+b^2}$
e ^{at}	$\frac{1}{s-a}$	sin bt	$\frac{b}{s^2+b^2}$
t^n	$\frac{n!}{s^{n+1}}$	$e^{at}\cos bt$	$\frac{(s-a)}{(s-a)^2+b^2}$
$t^n e^{at}$	$\frac{n!}{(s-a)^{n+1}}$	$e^{at}\sin bt$	$\frac{b}{(s-a)^2+b^2}$

Acceleration Due to Gravity

standard:
$$g = 32.2 \text{ ft/s}^2 \text{ (you can use } g = 32\text{)}$$

metric:
$$g = 9.8 \text{ m/s}^2 \text{ (you can use } g = 10)$$

1. A tank of water starts with 40 g of dye dissolved in 10 L of water. Solution containing 5 g/L of dye enters the tank at a rate of 6 L/s, mixes with the contents of the tank, and the mixture drains at a rate of 4 L/s.

Find the concentration of dye at time t. Find the limiting concentration of dye as $t \to \infty$.

Answer: the concentration is $5 - \frac{1000}{(10+2t)^3}$ g/L. The limiting concentration is 5 g/L

2. (a) Solve the equation

$$\frac{1}{x}y'=e^{x+y}.$$

This is a separable equation — answer: $y(x) = -\ln(-xe^x + e^x + C)$.

(b) Solve the equation

$$\frac{1}{x}y' + \frac{2}{x^2}y = \frac{e^x}{x^2}.$$

This is a 1st-order linear equation (so can use integrating factors). Answer: $y(x) = \frac{e^x}{x} - \frac{e^x}{x^2} + \frac{C}{x^2}$

- **3.** A 2lb weight is attached to a spring, stretching it 4 feet. There is a damping force, which is equal to 40 lb 5 lb when the weight is traveling at $\frac{5 \text{ ft/s}}{4}$ 20 ft/s. There's also an external force $F(t) = \frac{1}{4} \cos 3t$ lb acting on the weight.
- (a) Find the quasiperiod of the system and the general solution.
- (b) What is the amplitude and phase of the steady-state solution? (Your answer may involve square roots and trigonometric functions.)

The differential equation is $\frac{1}{16}u'' + \frac{1}{4}u' + \frac{1}{2}u = \frac{1}{4}\cos 3t$.

Answers: (a) Quasiperiod: $T_d=\pi$; general solution: $u(t)=c_1e^{-2t}\cos 2t+c_2e^{-2t}\sin 2t-\frac{4}{145}\cos 3t+\frac{48}{145}\sin 3t$.

(b) The steady state solution is $-\frac{4}{145}\cos 3t + \frac{48}{145}\sin 3t$. Amplitude: $\frac{4\sqrt{145}}{145}$, phase: $\tan^{-1}(-12) + \pi$.

4. Match the initial value problems shown below with the graphs of their solutions:

1.
$$\begin{cases} y'' + 5y' + 6y = 0 \\ y(0) = 1 \\ y'(0) = 0 \end{cases}$$
 Answer: F.

2.
$$\begin{cases} y'' - 4y' + 6y = 0 \\ y(0) = 1 \\ y'(0) = 0 \end{cases}$$
 Answer: C.

3.
$$\begin{cases} y'' - 5y' + 6y = 0 \\ y(0) = 1 \\ y'(0) = 0 \end{cases}$$
 Answer: D.

4.
$$\begin{cases} y'' + 6y = 0 \\ y(0) = 1 \\ y'(0) = 0 \end{cases}$$
 Answer: A.

5.
$$\begin{cases} y'' + 4y' + 6y = 0 \\ y(0) = 1 \\ y'(0) = 0 \end{cases}$$
 Answer: B.

(D)

(E)

5. Solve the initial value problem

$$Q'' + 2Q' + 10Q = E(t)$$

$$E(t) = \begin{cases} -10e^{-2t}, & t < \pi \\ 0, & t \ge \pi \end{cases}$$

$$Q(0) = 1$$

$$Q'(0) = -3.$$

Answer: Using step functions:

$$Q(t) = 2e^{-t}\cos(3t) - e^{-t}\sin(3t) - e^{2t} + u_{\pi}(t)e^{-2\pi} \left[-e^{-t+\pi}\cos(3t - 3\pi) + \frac{1}{3}e^{-t+\pi}\sin(3t - 3\pi) + e^{-2(t-\pi)} \right]$$

In piecewise form (before simplification):

$$Q(t) = \begin{cases} 2e^{-t}\cos(3t) - e^{-t}\sin(3t) - e^{2t}, & t < \pi \\ 2e^{-t}\cos(3t) - e^{-t}\sin(3t) - e^{-2\pi}e^{-t+\pi}\cos(3t - 3\pi) + \frac{1}{3}e^{-2\pi}e^{-t+\pi}\sin(3t - 3\pi), & t \ge \pi. \end{cases}$$

6. Find the Laplace transform of $f(t) = t \sin t$, using the definition of the Laplace transform.

You can use the facts that $\mathcal{L}\{\sin t\} = \frac{1}{s^2+1}$ and $\mathcal{L}\{\cos t\} = \frac{s}{s^2+1}$.

Answer: $\mathcal{L}\{t\sin t\} = \frac{2s}{(s^2+1)^2}$.