Information you'll have for the final:
Table of Laplace Transforms

f	$\mathcal{L}[f]$	f	$\mathcal{L}[f]$
1	$\frac{1}{s}$	$\cos b t$	$\frac{s}{s^{2}+b^{2}}$
$e^{a t}$	$\frac{1}{s-a}$	$\sin b t$	$\frac{b}{s^{2}+b^{2}}$
t^{n}	$\frac{n!}{s^{n+1}}$	$e^{a t} \cos b t$	$\frac{(s-a)}{(s-a)^{2}+b^{2}}$
$t^{n} e^{a t}$	$\frac{n!}{(s-a)^{n+1}}$	$e^{a t} \sin b t$	$\frac{b}{(s-a)^{2}+b^{2}}$

Acceleration Due to Gravity

standard: $\quad g=32.2 \mathrm{ft} / \mathrm{s}^{2}$ (you can use $g=32$)
metric: $\quad g=9.8 \mathrm{~m} / \mathrm{s}^{2}($ you can use $g=10)$

1. A tank of water starts with 40 g of dye dissolved in 10 L of water. Solution containing $5 \mathrm{~g} / \mathrm{L}$ of dye enters the tank at a rate of $6 \mathrm{~L} / \mathrm{s}$, mixes with the contents of the tank, and the mixture drains at a rate of $4 \mathrm{~L} / \mathrm{s}$.

Find the concentration of dye at time t. Find the limiting concentration of dye as $t \rightarrow \infty$.
Answer: the concentration is $5-\frac{1000}{(10+2 t)^{3}} g / L$. The limiting concentration is $5 \mathrm{~g} / \mathrm{L}$
2. (a) Solve the equation

$$
\frac{1}{x} y^{\prime}=e^{x+y}
$$

This is a separable equation — answer: $y(x)=-\ln \left(-x e^{x}+e^{x}+C\right)$.
(b) Solve the equation

$$
\frac{1}{x} y^{\prime}+\frac{2}{x^{2}} y=\frac{e^{x}}{x^{2}}
$$

This is a 1st-order linear equation (so can use integrating factors). Answer: $y(x)=\frac{e^{x}}{x}-\frac{e^{x}}{x^{2}}+\frac{C}{x^{2}}$
3. A 2 lb weight is attached to a spring, stretching it 4 feet. There is a damping force, which is equal to 40 lb 5 lb when the weight is traveling at $5 \mathrm{ft} / \mathrm{s} 20 \mathrm{ft} / \mathrm{s}$. There's also an external force $F(t)=\frac{1}{4} \cos 3 t \mathrm{lb}$ acting on the weight.
(a) Find the quasiperiod of the system and the general solution.
(b) What is the amplitude and phase of the steady-state solution? (Your answer may involve square roots and trigonometric functions.)
The differential equation is $\frac{1}{16} u^{\prime \prime}+\frac{1}{4} u^{\prime}+\frac{1}{2} u=\frac{1}{4} \cos 3 t$.
Answers: (a) Quasiperiod: $T_{d}=\pi$;
general solution: $u(t)=c_{1} e^{-2 t} \cos 2 t+c_{2} e^{-2 t} \sin 2 t-\frac{4}{145} \cos 3 t+\frac{48}{145} \sin 3 t$.
(b) The steady state solution is $-\frac{4}{145} \cos 3 t+\frac{48}{145} \sin 3 t$. Amplitude: $\frac{4 \sqrt{145}}{145}$, phase: $\tan ^{-1}(-12)+\pi$.
4. Match the initial value problems shown below with the graphs of their solutions:

1. $\left\{\begin{aligned} y^{\prime \prime}+5 y^{\prime}+6 y & =0 \\ y(0) & =1 \\ y^{\prime}(0) & =0\end{aligned} \quad\right.$ Answer: F.
2. $\left\{\begin{aligned} y^{\prime \prime}-4 y^{\prime}+6 y & =0 \\ y(0) & =1 \\ y^{\prime}(0) & =0\end{aligned} \quad\right.$ Answer: C.
3. $\left\{\begin{aligned} y^{\prime \prime}-5 y^{\prime}+6 y & =0 \\ y(0) & =1 \\ y^{\prime}(0) & =0\end{aligned} \quad\right.$ Answer: D.
4. $\left\{\begin{aligned} y^{\prime \prime}+6 y & =0 \\ y(0) & =1 \\ y^{\prime}(0) & =0\end{aligned} \quad\right.$ Answer: A.
5. $\left\{\begin{aligned} y^{\prime \prime}+4 y^{\prime}+6 y & =0 \\ y(0) & =1 \\ y^{\prime}(0) & =0\end{aligned} \quad\right.$ Answer: B.

(A)

(D)

(B)

(C)

(F)
6. Solve the initial value problem

$$
\begin{aligned}
Q^{\prime \prime}+2 Q^{\prime}+10 Q & =E(t) \\
E(t) & = \begin{cases}-10 e^{-2 t}, & t<\pi \\
0, & t \geq \pi\end{cases} \\
Q(0) & =1 \\
Q^{\prime}(0) & =-3 .
\end{aligned}
$$

Answer: Using step functions:
$Q(t)=2 e^{-t} \cos (3 t)-e^{-t} \sin (3 t)-e^{2 t}+u_{\pi}(t) e^{-2 \pi}\left[-e^{-t+\pi} \cos (3 t-3 \pi)+\frac{1}{3} e^{-t+\pi} \sin (3 t-3 \pi)+e^{-2(t-\pi)}\right]$

In piecewise form (before simplification):
$Q(t)= \begin{cases}2 e^{-t} \cos (3 t)-e^{-t} \sin (3 t)-e^{2 t}, & t<\pi \\ 2 e^{-t} \cos (3 t)-e^{-t} \sin (3 t)-e^{-2 \pi} e^{-t+\pi} \cos (3 t-3 \pi)+\frac{1}{3} e^{-2 \pi} e^{-t+\pi} \sin (3 t-3 \pi), & t \geq \pi\end{cases}$
6. Find the Laplace transform of $f(t)=t \sin t$, using the definition of the Laplace transform.

You can use the facts that $\mathcal{L}\{\sin t\}=\frac{1}{s^{2}+1}$ and $\mathcal{L}\{\cos t\}=\frac{s}{s^{2}+1}$.
Answer: $\mathcal{L}\{t \sin t\}=\frac{2 s}{\left(s^{2}+1\right)^{2}}$.

