1. Solve the IVP

$$
\begin{aligned}
y^{\prime \prime}-4 y^{\prime}+4 y & =e^{2 t} \cos (3 t)+4 \\
y(0) & =0 \\
y^{\prime}(0) & =0 .
\end{aligned}
$$

2. An object weighing 96 lb is attached to a spring, stretching it 2 feet. Assume there is no damping, and that an external force $F(t)=3 \sin (4 t)-\cos (4 t)$ is applied to the object. At time $t=0$, you push the object 3 feet upward from equilibrium position and give it an initial velocity of $1 \mathrm{ft} / \mathrm{s}$ downward. Find the position of the object at time t.
(Recall $g=32 \mathrm{ft} / \mathrm{s}^{2}$).
3. A 10 kg rock is attached to a spring, stretching it 2 meters.
(a) For this part only, assume there is no damping, and no external force. If at $t=0$ the spring is stretched downward by 2 m and the rock is released with initial velocity $7 \mathrm{~m} / \mathrm{s}$ upward, find the period, amplitude, and phase of the motion (Your answer for the phase may involve a trigonometric function).
(b) Now assume there is damping, and that the magnitude of the damping force is 12 N when the object is traveling at $2 \mathrm{~m} / \mathrm{s}$. Find the quasi-period of the motion.
(c) How large does the damping force need to be for the system to be critically damped?
4. Given that $y_{1}(t)=1 / t$ is a solution to the following equation, find another solution:

$$
t^{2} y^{\prime \prime}+3 t y^{\prime}+y=0, \quad t>0
$$

