Information you'll have for the final:

f	$\mathcal{L}[f]$	f	$\mathcal{L}[f]$
1	$\frac{1}{s}$	cos bt	$\frac{s}{s^2+b^2}$
e ^{at}	$\frac{1}{s-a}$	sin bt	$\frac{b}{s^2+b^2}$
t^n	$\frac{n!}{s^{n+1}}$	$e^{at}\cos bt$	$\frac{(s-a)}{(s-a)^2+b^2}$
$t^n e^{at}$	$\frac{n!}{(s-a)^{n+1}}$	$e^{at}\sin bt$	$\frac{b}{(s-a)^2+b^2}$

Table of Laplace Transforms

Acceleration Due to Gravity

standard:	$g = 32.2 \text{ ft/s}^2$ (you can use $g = 32$)
metric:	$g = 9.8 \text{ m/s}^2$ (you can use $g = 10$)

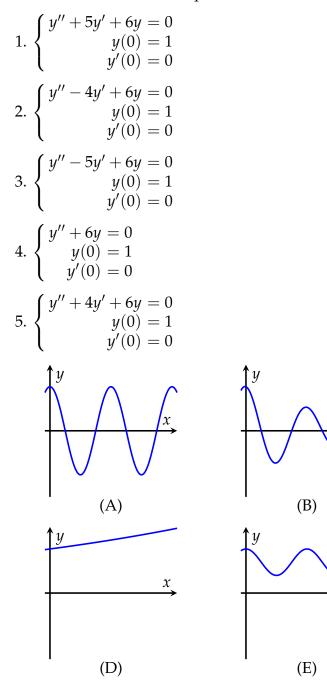
1. A tank of water starts with 40 g of dye dissolved in 10 L of water. Solution containing 5 g/L of dye enters the tank at a rate of 6 L/s, mixes with the contents of the tank, and the mixture drains at a rate of 4 L/s.

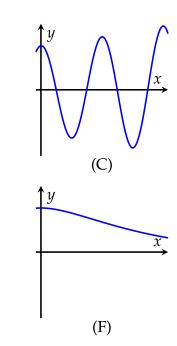
Find the concentration of dye at time *t*. Find the limiting concentration of dye as $t \to \infty$.

2. (a) Solve the equation

$$\frac{1}{x}y' = e^{x+y}.$$

(b) Solve the equation


$$\frac{1}{x}y' + \frac{2}{x^2}y = \frac{e^x}{x^2}.$$


3. A 2lb weight is attached to a spring, stretching it 4 feet. There is a damping force, which is equal to 40 lb 5 lb when the weight is traveling at $\frac{5 \text{ ft/s}}{20}$ ft/s. There's also an external force $F(t) = \frac{1}{4} \cos 3t$ lb acting on the weight.

(a) Find the quasiperiod of the system and the general solution.

(b) What is the amplitude and phase of the steady-state solution? (Your answer may involve square roots and trigonometric functions.)

4. Match the initial value problems shown below with the graphs of their solutions:

x

5. Solve the initial value problem

$$Q'' + 2Q' + 10Q = E(t)$$
$$E(t) = \begin{cases} -10e^{-2t}, & t < \pi \\ 0, & t \ge \pi \end{cases}$$
$$Q(0) = 1$$
$$Q'(0) = -3.$$

6. Find the Laplace transform of $f(t) = t \sin t$, using the definition of the Laplace transform. You can use the facts that $\mathcal{L}{\sin t} = \frac{1}{s^2+1}$ and $\mathcal{L}{\cos t} = \frac{s}{s^2+1}$.