1a. The differential equation is $2 u^{\prime \prime}+6 u^{\prime}+29 u=0$. The roots of the characteristic equation are $-3 / 2 \pm 7 i / 2$. The general solution is $e^{-3 t / 2}\left[c_{1} \cos (7 t / 2)+c_{2} \sin (7 t / 2)\right]$. Using the initial condition $u(0)=1$, we get that $c_{1}=1$. Then using the condition $u^{\prime}(0)=0$, we find that $c_{2}=3 / 7$. So our final solution is

$$
e^{-3 t / 2}[\cos (7 t / 2)+(3 / 7) \sin (7 t / 2)]
$$

1b. If we write they function as a pure cosine function, we have $u=\frac{\sqrt{58}}{7} e^{-3 t / 2} \cos (7 t / 2-\delta)$. Since $1 / 4 \mathrm{in}=1 / 48 \mathrm{ft}$, we set $\frac{\sqrt{58}}{7} e^{-3 t / 2}=1 / 48$ and solve for t to get

$$
t=-\frac{2}{3} \ln \left(\frac{7}{48 \sqrt{58}}\right) \approx 2.64 \mathrm{~s}
$$

2 The solution to the homogeneous version of the equation is $y_{h}=c_{1} e^{5 t}+c_{2} e^{-2 t}$. The particular solution will be of the form $Y=A t^{2} e^{5 t}+B t e^{5 t}$. Taking derivatives, we get

	$t^{2} e^{5 t}$	$t e^{5 t}$	$e^{5 t}$
$Y^{\prime \prime}$	$25 A$	$20 A+25 B$	$2 A+10 B$
Y^{\prime}	$5 A$	$2 A+5 B$	B
Y	A	B	

Then we find $A=-1 / 14$ and $B=1 / 49$, so the general solution is

$$
y=c_{1} e^{5 t}+c_{2} e^{-2 t}-\frac{1}{14} t^{2} e^{5 t}+\frac{1}{49} t e^{5 t} .
$$

3 Make a substitution $u=u^{\prime}$. Then the equation is $t u^{\prime}-5 u=0$. This is separable, and we get $u=c_{1} t^{5}$. Integrating, we get

$$
y=\int u d t=\frac{c_{1}}{6} t^{6}+c_{2} .
$$

As long as c_{1} is not zero, this is a nonconstant solution. I would probably pick t^{6}.
4 The particular solution is of the form $Y=A \cos 2 t+B \sin 2 t$. Since there is damping, the solution to the homogeneous version of the problem has an exponential term, so this Y is not a solution to the homogeneous version. We get a system of equations

$$
\begin{aligned}
& -2 A-3 B=1 \\
& -3 A+2 B=2
\end{aligned}
$$

The solution is $A=-8 / 13$ and $B=1 / 13$. So the steady state solution is

$$
-(8 / 13) \cos 2 t+(1 / 13) \sin 2 t .
$$

5a The initial value problem is $m u^{\prime \prime}+49 u=0, u(0)=0.25, u^{\prime}(0)=-1$. The solution is $0.25 \cos (7 t / \sqrt{m})-(\sqrt{m} / 7) \sin (7 t / \sqrt{m})$. The amplitude is $\sqrt{(0.25)^{2}}+(m / 49)$. If we set this equal to 0.5 and solve for m, we get $m=9.19 \mathrm{~kg}$.
$5 b$ The period is $\frac{2 \pi}{7 / \sqrt{m}}$. If we set this equal to 1 and solve for m, we get $m=1.24 \mathrm{~kg}$.

