Math 307 E - Summer 2011

Practice Midterm 2
August 17, 2011

Name: \qquad Student number:

1	10	
2	10	
3	10	
4	10	
5	10	
6	3^{*}	
Total	50	

- Complete all questions.
- You may use a scientific calculator during this examination. Other electronic devices (e.g. cell phones) are not allowed, and should be turned off for the duration of the exam.
- You may use one hand-written 8.5 by 11 inch page of notes.
- Show all work for full credit.
- You have $60+$ minutes to complete the exam.

1. Find the general solution to the differential equations:
(a) (5 points)

$$
y^{\prime \prime}-2 y^{\prime}-3 y=t e^{t}
$$

The characteristic equation is $r^{2}-2 r-3=(r-3)(r+1)=0$, so $r=3,-1$. Then the homogeneous solution is $y_{h}=c_{1} e^{3 t}+c_{2} e^{-t}$.
We guess a particular solution: $y_{p}=\left(a_{0}+a_{1} t\right) e^{t}$. Then $y_{p}^{\prime}=\left[\left(a_{0}+a_{1}\right)+a_{1} t\right] e^{t}$ and $y_{p}^{\prime \prime}=\left[\left(a_{0}+2 a_{1}\right)+a_{1} t\right] e^{t}$. Plugging this into the left-hand side, we get

$$
e^{t}\left[\left(a_{0}+2 a_{1}-2\left(a_{0}+a_{1}\right)-3 a_{0}\right)+\left(a_{1}-2 a_{1}-3 a_{1}\right) t\right]=t e^{t}
$$

So that we have two equations: $-4 a_{1}=1$ and $-4 a_{0}=0$. So $y_{p}=\frac{-t}{4} e^{t}$, and

$$
y(t)=y_{h}+y_{p}=c_{1} e^{3 t}+c_{2} e^{-t}-\frac{t}{4} e^{t}
$$

(b) (5 points)

$$
y^{\prime \prime}-2 y^{\prime}-3 y=g(t)
$$

Hint: Express your answer using integrals.

Using the homogeneous solution above, we have $y_{1}(t)=e^{3 t}$ and $y_{2}(t)=e^{-t}$. The variation of parameters formula tells us that $y_{p}(t)=u_{1}(t) y_{1}(t)+u_{2}(t) y_{2}(t)$ where $u_{1}(t)=-\int_{0}^{t} y_{2}(s) \frac{g(s)}{W\left(y_{1}, y_{2}\right)(s)} d s$, and $u_{2}(t)=\int_{0}^{t} y_{1}(s) \frac{g(s)}{W\left(y_{1}, y_{2}\right)(s)} d s$. We compute the wronskian:

$$
W\left(e^{3 t}, e^{-t}\right)(t)=\left|\begin{array}{cc}
e^{3 t} & e^{-t} \\
3 e^{3 t} & -e^{-t}
\end{array}\right|=-4 e^{2 t}
$$

Then

$$
\begin{aligned}
& u_{1}(t)=-\int_{0}^{t} e^{-s} \frac{g(s)}{-4 e^{2 s}} d s=\frac{1}{4} \int_{0}^{t} e^{-3 s} g(s) d s \\
& u_{2}(t)=\int_{0}^{t} e^{3 s} \frac{g(s)}{-4 e^{2 s}} d s=-\frac{1}{4} \int_{0}^{t} e^{s} g(s) d s
\end{aligned}
$$

and so $y(t)=y_{h}(t)+y_{p}(t)$ gives

$$
y(t)=c_{1} e^{3 t}+c_{2} e^{-t}+\frac{e^{3 t}}{4} \int_{0}^{t} e^{-3 s} g(s) d s-\frac{e^{-t}}{4} \int_{0}^{t} e^{s} g(s) d s
$$

2. (10 points) Suppose that the motion of a spring-mass system satisfies

$$
u^{\prime \prime}+u^{\prime}+1.5 u=\sin (2 t)
$$

and that the mass starts $(t=0)$ at the equilibrium position from rest. Find the the position $u(t)$ at any time t.

We first solve the homogeneous equation. We get $r^{2}+r+1.5=0$, so $r=-\frac{1}{2} \pm \frac{\sqrt{5}}{2} i$. Then $e^{r t}=e^{-t / 2}(\cos (t \sqrt{5} / 2)+i \sin (t \sqrt{5} / 2))$; taking real and imaginary parts we get

$$
u_{h}(t)=c_{1} e^{-t / 2} \cos (t \sqrt{5} / 2)+c_{2} e^{-t / 2} \sin (t \sqrt{5} / 2)
$$

Then we need to find a particular solution. We might as well use undetermined coefficients. So we replace $\sin (2 t)$ with $e^{2 t i}$, since $\operatorname{Im}\left(e^{2 t i}\right)=\sin (2 t)$. Then we guess that $v_{p}(t)=A e^{2 t i}$. Plugging into the equation, we get:

$$
e^{2 t i}(-4+2 i+1.5) A=e^{2 t i}
$$

This tells us that $A=\frac{1}{-2.5+2 i}=\frac{-2.5-2 i}{41 / 4}=-\frac{10}{41}-\frac{8}{41} i$. Then

$$
\begin{aligned}
v_{p}(t) & =-\left(\frac{10}{41}+\frac{8}{41} i\right) e^{2 i t}=-\left(\frac{10}{41}+\frac{8}{41} i\right)(\cos (2 t)+i \sin (2 t)) \\
& =\left(\frac{10}{41} \cos (2 t)-\frac{8}{41} \sin (2 t)\right)+i\left(\frac{-8}{41} \cos (2 t)+\frac{-10}{41} \sin (2 t)\right)
\end{aligned}
$$

Thus $u_{p}(t)=\operatorname{Im}\left(v_{p}(t)\right)=-\left(\frac{8}{41} \cos (2 t)+\frac{10}{41} \sin (2 t)\right)$ is a particular solution to the original problem. We have then that

$$
u(t)=u_{h}(t)+u_{p}(t)=c_{1} e^{-t / 2} \cos (t \sqrt{5} / 2)+c_{2} e^{-t / 2} \sin (t \sqrt{5} / 2)+-\left(\frac{8}{41} \cos (2 t)+\frac{10}{41} \sin (2 t)\right)
$$

Since the initial conditions are $u(0)=0=u^{\prime}(0)$, we get that

$$
\begin{aligned}
& 0=u(0)=c_{1}-8 / 41 \\
& 0=u^{\prime}(0)=-\frac{c_{1}}{2}+c_{2} \frac{\sqrt{5}}{2}+\frac{20}{41}
\end{aligned}
$$

Then $c_{1}=8 / 41$, and so $c_{2}=-\frac{12}{41} \cdot \frac{2}{\sqrt{5}}=\frac{24 \sqrt{5}}{205}$. Finally,

$$
u(t)=\frac{8}{41} e^{-t / 2} \cos (t \sqrt{5} / 2)+\frac{24 \sqrt{5}}{205} e^{-t / 2} \sin (t \sqrt{5} / 2)+-\left(\frac{8}{41} \cos (2 t)+\frac{10}{41} \sin (2 t)\right)
$$

3. Compute the following Laplace transforms using the definition, or using only the numbers (1),(13),(14),(18), and (19) on the table.
(a) (5 points)

$$
\mathcal{L}\left\{t^{2} e^{\pi t}\right\}
$$

We know from (1) that $\mathcal{L}\{1\}=\frac{1}{s}$. Then from (19), we know that $\mathcal{L}\left\{t^{2} \cdot 1\right\}=\left(\frac{1}{s}\right)^{\prime \prime}=$ $\frac{2}{s^{3}}$. Finally, from (14), we know that $\mathcal{L}\left\{e^{\pi t} t^{2}\right\}=\frac{2}{(s-\pi)^{3}}$.
(b) (5 points)

$$
\mathcal{L}\left\{u_{3}(t)\left(t^{2}-2 t-1\right)\right\}
$$

If $g(t)=t^{2}-2 t-1$, then $f(t):=g(t+3)=(t+3)^{2}-2(t+3)-1=t^{2}+6 t+9-2 t-6-1=$ $t^{2}+4 t+2$. Observe that $f(t-3)=g(t)$, so that $\mathcal{L}\left\{u_{3}(t) g(t)\right\}=\mathcal{L}\left\{u_{3}(t) f(t-3)\right\}$ which is $e^{-3 s} \mathcal{L}\{f(t)\}$ by (13).
We use linearity to compute $\mathcal{L}\{f(t)\}$: since we computed $\mathcal{L}\{t\}=\frac{1}{s}$ and $\mathcal{L}\left\{t^{2}\right\}=\frac{2}{s^{3}}$ above, we only need to know $\mathcal{L}\{t\}$. For this we can use (18): $\mathcal{L}\{2 t\}=\mathcal{L}\left\{\left(t^{2}\right)^{\prime}\right\}=$ $s \mathcal{L}\left\{t^{2}\right\}=\frac{2}{s^{2}}$. Dividing both sides by 2 (and using linearity), we get that $\mathcal{L}\{t\}=\frac{1}{s^{2}}$. Now by linearity: $\mathcal{L}\{f(t)\}=\frac{2}{s^{3}}+\frac{4}{s^{2}}+\frac{2}{s}$, so that

$$
\mathcal{L}\left\{u_{3}(t) g(t)\right\}=e^{-3 s}\left(\frac{2}{s^{3}}+\frac{4}{s^{2}}+\frac{2}{s}\right)=\frac{e^{-3 s}}{s^{3}}\left(2 s^{2}+4 s+2\right) .
$$

4. (10 points) Use the Laplace transform to solve the following IVP using the table:

$$
y^{\prime \prime}-y=\left\{\begin{array} { l l }
{ 1 } & { t < 2 } \\
{ t / 3 } & { 2 \leq t }
\end{array} \quad \left\{\begin{array}{l}
y(0)=0 \\
y^{\prime}(0)=0
\end{array}\right.\right.
$$

We first re-write the driving function $g(t)$ (right-hand side) using the unit step functions. We get that $g(t)=1+u_{2}(t)\left(\frac{t}{3}-1\right)$. Then we take the Laplace transform of both sides:

$$
\mathcal{L}\left\{y^{\prime \prime}\right\}-\mathcal{L}\{y\}=\frac{1}{s}+\mathcal{L}\left\{u_{2}(t)(t / 3-1)\right\}
$$

Use (13) to evaluate the last Laplace transform: first, observe that $t / 3-1=\frac{t-2}{3}-\frac{1}{3}$, so if $f(t)=t / 3-\frac{1}{3}$, we have that

$$
\mathcal{L}\left\{u_{2}(t)(t / 3-1)\right\}=\mathcal{L}\left\{u_{2}(t) f(t-2)\right\}=e^{-2 s}\left(\frac{1}{3 s^{2}}-\frac{1}{3 s}\right) .
$$

For the left-hand side, we use the usual formulas (18 on the table):

$$
\left(s^{2}-1\right) \mathcal{L}\{y\}=\frac{1}{s}+\frac{e^{-2 s}}{3 s^{2}}-\frac{e^{-2 s}}{3 s}
$$

Solve: $\mathcal{L}\{y\}=\frac{3-e^{-2 s}}{3 s(s+1)(s-1)}+\frac{e^{-2 s}}{3 s^{2}(s+1)(s-1)}$.
Partial fractions expansion gives $\frac{1}{s(s+1)(s-1)}=\frac{-1}{s}+\frac{1 / 2}{s+1}+\frac{1 / 2}{s-1}$. Thus:

$$
\mathcal{L}^{-1}\left\{\frac{1}{s(s+1)(s-1)}\right\}=-1+\frac{1}{2} e^{-t}+\frac{1}{2} e^{t} .
$$

Partial fractions expansion gives $F(s):=\frac{1}{s^{2}(s+1)(s-1)}=\frac{A}{s}+\frac{-1}{s^{2}}+\frac{-1 / 2}{s+1}+\frac{1 / 2}{s-1}$ if we just use the cover-up method. To solve for A, just pick a different value for s (other than $s=-1,0,1$); we pick $s=2$, and get that $A=0$. So it is easy now to compute

$$
\mathcal{L}^{-1}\{F(s)\}=-t-\frac{1}{2} e^{-t}+\frac{1}{2} e^{t}=: f(t) .
$$

It follows that $\mathcal{L}^{-1}\left\{e^{-2 s} \frac{F(s)}{3}\right\}=\frac{u_{2}(t)}{3} f(t-2)$ by (13); then finally,

$$
\begin{aligned}
y(t)= & -1+\frac{1}{2} e^{-t}+\frac{1}{2} e^{t}-\frac{u_{2}(t)}{3}\left(-1+\frac{1}{2} e^{-(t-2)}+\frac{1}{2} e^{t-2}\right) \\
& +\frac{u_{2}(t)}{3}\left(-(t-2)-\frac{1}{2} e^{-t+2}+\frac{1}{2} e^{t-2}\right) \\
= & -1+\cosh (t)+\frac{u_{2}(t)}{3}(3-t-\cosh (t-2)+\sinh (t-2)) .
\end{aligned}
$$

5. (10 points) A spring-mass system has a spring constant of $2 \mathrm{~N} / \mathrm{m}$. A mass of 8 kg is attached to the spring. Let γ be the damping constant of the system.
(a) (2 points) What is the natural frequency of the system?

$$
w_{0}=\sqrt{k / m}=\sqrt{2 / 8}=1 / 2
$$

(b) (2 points) Suppose $\gamma=9$. Is the (free) system under-damped, over-damped or critically damped?

The discriminant $\Delta=\gamma^{2}-4 m k=9^{2}-4(8)(2)>0$. Thus the system is over-damped.
(c) (2 points) From now on, suppose $\gamma=2$. Find the quasi-frequency of the (free) system.

$$
\mu=w_{0} \sqrt{1-\frac{\gamma^{2}}{4 k m}}=\frac{1}{2} \sqrt{1-\frac{4}{4(8)(2)}}=\frac{1}{2} \sqrt{15 / 16} .
$$

(d) (2 points) Suppose we apply an external force $F(t)=5 \cos (w t) \mathrm{N}$. What is the resonant frequency of this forced system?

$$
w_{r e s}=w_{0} \sqrt{1-\frac{\gamma^{2}}{2 m k}}=\frac{1}{2} \sqrt{1-\frac{4}{2(8)(2)}}=\frac{1}{2} \sqrt{7 / 8}
$$

(e) (2 points) Write down the initial value problem corresponding to this forced system where w is the resonant frequency, and the mass starts at rest from the equilibrium position.

$$
8 u^{\prime \prime}+2 u^{\prime}+2 u=5 \cos \left(t \frac{\sqrt{7 / 8}}{2}\right) \quad\left\{\begin{array}{l}
u(0)=0 \\
u^{\prime}(0)=0
\end{array}\right.
$$

6. (3 bonus points) Compute the laplace transform of $\ln (t)$ by following these steps.
(a) (1 point) Differentiate the formula

$$
\mathcal{L}\left(t^{p}\right)=\int_{0}^{\infty} e^{-s t} t^{p} d t=\frac{\Gamma(p+1)}{s^{p+1}}
$$

with respect to p. For the the middle term, move the differential operator $\frac{d}{d p}$ inside the integral and apply it to the integrand.

$$
\begin{aligned}
\frac{\Gamma^{\prime}(p+1) s^{p+1}-\Gamma(p+1) s^{p+1} \ln (s)}{s^{2 p+2}}=\frac{d}{d p}\left(\frac{\Gamma(p+1)}{s^{p+1}}\right) & =\frac{d}{d p} \int_{0}^{\infty} e^{-s t} t^{p} d t \\
& =\int_{0}^{\infty} e^{-s t} \frac{d}{d p}\left(t^{p}\right) d t \\
& =\int_{0}^{\infty} e^{-s t} t^{p} \ln (t) d t
\end{aligned}
$$

(b) (1 point) Simplify as much as possible, and then evaluate the resulting expression at $p=0$.

If we simplify the left-hand side, we get

$$
\frac{\Gamma^{\prime}(p+1)-\Gamma(p+1) \ln (s)}{s^{p+1}}=\int_{0}^{\infty} e^{-s t} t^{p} \ln (t) d t
$$

Evaluating at $p=0$, we get

$$
\frac{\Gamma^{\prime}(1)-\ln (s)}{s}=\int_{0}^{\infty} e^{-s t} \ln (t) d t
$$

(c) (1 point) What is $\mathcal{L}(\ln (t))$?

By definition, $\mathcal{L}\{\ln (t)\}=\int_{0}^{\infty} e^{-s t} \ln (t) d t$, which is

$$
\frac{\Gamma^{\prime}(1)-\ln (s)}{s}
$$

by the previous formula.

Table of Laplace transforms:

$$
f(t)=\mathcal{L}^{-1}\{F(s)\} \quad F(s)=\mathcal{L}\{f(t)\}
$$

1. 1
$\frac{1}{s}, \quad s>0$
2. $e^{a t}$
$\frac{1}{s-a}, \quad s>a$
3. $t^{n}, \quad n=$ positive integer $\quad \frac{n!}{s^{n+1}}, \quad s>0$
4. $t^{p}, \quad p>-1$
$\frac{\Gamma(p+1)}{s^{p+1}}, \quad s>0$
5. $\sin a t$
$\frac{a}{s^{2}+a^{2}}, \quad s>0$
6. $\cos a t$
$\frac{s}{s^{2}+a^{2}}, \quad s>0$
7. $\sinh a t$
$\frac{a}{s^{2}-a^{2}}, \quad s>|a|$
8. $\cosh a t$
$\frac{s}{s^{2}-a^{2}}, \quad s>|a|$
9. $e^{a t} \sin b t$
$\frac{b}{(s-a)^{2}+b^{2}}, \quad s>a$
10. $e^{a t} \cos b t$
$\frac{s-a}{(s-a)^{2}+b^{2}}, \quad s>a$
11. $t^{n} e^{a t}, \quad n=$ positive integer $\frac{n!}{(s-a)^{n+1}}$
12. $u_{c}(t)$
13. $u_{c}(t) f(t-c)$
$\frac{e^{-c s}}{s}, \quad s>0$
14. $e^{c t} f(t)$
$F(s-c)$
15. $f(c t)$
16. $\int_{0}^{t} f(t-\tau) g(\tau) d \tau$
$\frac{1}{c} F\left(\frac{s}{c}\right), c>0$
17. $\delta(t-c)$
$F(s) G(s)$
$e^{-c s}$
18. $f^{(n)}(t)$
$s^{n} F(s)-s^{n-1} f(0)-\cdots-f^{(n-1)}(0)$
19. $(-t)^{n} f(t)$
$F^{(n)}(s)$
