Math 307 E - Summer 2011 Practice Midterm 2 August 17, 2011

Name:	Student number:

1	10	
2	10	
3	10	
4	10	
5	10	
6	3*	
Total	50	

- Complete all questions.
- You may use a scientific calculator during this examination. Other electronic devices (e.g. cell phones) are not allowed, and should be turned off for the duration of the exam.
- You may use one hand-written 8.5 by 11 inch page of notes.
- Show all work for full credit.
- You have 60+ minutes to complete the exam.

.

- 1. Find the general solution to the differential equations:
 - (a) (5 points)

$$y'' - 2y' - 3y = te^t.$$

(b) (5 points)

$$y'' - 2y' - 3y = g(t)$$

Hint: Express your answer using integrals.

2. (10 points) Suppose that the motion of a spring-mass system satisfies

$$u'' + u' + 1.5u = \sin(2t)$$

and that the mass starts (t=0) at the equilibrium position from rest. Find the the position u(t) at any time t.

- 3. Compute the following Laplace transforms using the definition, or using only the numbers 1,13,14,18, and 19 on the table.
 - (a) (5 points)

$$\mathcal{L}\left\{t^2e^{\pi t}\right\}$$

(b) (5 points)

$$\mathcal{L}\left\{u_3(t)(t^2-2t-1)\right\}$$

4. (10 points) Use the Laplace transform to solve the following IVP using the table:

$$y'' - y = \begin{cases} 1 & t < 2 \\ t/3 & 2 \le t \end{cases} \begin{cases} y(0) = 0 \\ y'(0) = 0. \end{cases}$$

5. (10 points) A spring-mass system has a spring constant of 2N/m. A mass of 8kg is attached to the spring. Let γ be the damping constant of the system.
(a) (2 points) What is the <i>natural frequency</i> of the system?
(b) (2 points) Suppose $\gamma=9$. Is the (free) system under-damped, over-damped or critically damped?
(c) (2 points) From now on, suppose $\gamma=2$. Find the quasi-frequency of the (free) system.
(d) (2 points) Suppose we apply an external force $F(t) = 5\cos(wt)$ N. What is the resonant frequency of this forced system?
(e) (2 points) Write down the initial value problem corresponding to this forced system where w is the resonant frequency, and the mass starts at rest from the equilibrium position.

- 6. (3 bonus points) Compute the laplace transform of ln(t) by following these steps.
 - (a) (1 point) Differentiate the formula

$$\mathcal{L}(t^p) = \int_0^\infty e^{-st} t^p dt = \frac{\Gamma(p+1)}{s^{p+1}}$$

with respect to p. For the the middle term, move the differential operator $\frac{d}{dp}$ inside the integral and apply it to the integrand.

(b) (1 point) Simplify as much as possible, and then evaluate the resulting expression at p=0.

(c) (1 point) What is $\mathcal{L}(\ln(t))$?

Table of Laplace transforms:

$$f(t) = \mathcal{L}^{-1}\left\{F(s)\right\}$$

$$F(s) = \mathcal{L}\left\{f(t)\right\}$$

$$\frac{1}{s}$$
, $s > 0$

$$e^{at}$$

$$\frac{1}{s-a}$$
, $s>a$

3.
$$t^n$$
, $n = positive integer$

$$\frac{n!}{s^{n+1}}, \quad s > 0$$

4.
$$t^p$$
, $p > -1$

$$\frac{\Gamma(p+1)}{s^{p+1}}, \quad s > 0$$

5.
$$\sin at$$

$$\frac{a}{s^2 + a^2}, \quad s > 0$$

6.
$$\cos at$$

$$\frac{s}{s^2 + a^2}, \quad s > 0$$

7.
$$\sinh at$$

$$\frac{a}{s^2 - a^2}, \quad s > |a|$$

8.
$$\cosh at$$

$$\frac{s}{s^2 - a^2}, \quad s > |a|$$

9.
$$e^{at} \sin bt$$

$$\frac{b}{(s-a)^2+b^2}, \quad s > a$$

10.
$$e^{at}\cos bt$$

$$\frac{s-a}{(s-a)^2+b^2}, \quad s > a$$

11.
$$t^n e^{at}$$
, $n = positive integer $\frac{n!}{(s-a)^{n+1}}$$

$$\frac{n!}{(s-a)^{n+1}}$$

12.
$$u_c(t)$$

$$\frac{e^{-cs}}{s}, \quad s > 0$$

13.
$$u_c(t)f(t-c)$$

$$e^{-cs}F(s)$$

14.
$$e^{ct}f(t)$$

$$F(s-c)$$

15.
$$f(ct)$$

$$\frac{1}{c}F\left(\frac{s}{c}\right), c>0$$

16.
$$\int_0^t f(t-\tau)g(\tau)d\tau$$

17.
$$\delta(t-c)$$

$$e^{-cs}$$

18.
$$f^{(n)}(t)$$

$$s^n F(s) - s^{n-1} f(0) - \dots - f^{(n-1)}(0)$$

$$19. \quad (-t)^n f(t)$$

$$F^{(n)}(s)$$