Math 307 E - Summer 2011

Practice Midterm 2
August 17, 2011

Name: \qquad Student number:

1	10	
2	10	
3	10	
4	10	
5	10	
6	3^{*}	
Total	50	

- Complete all questions.
- You may use a scientific calculator during this examination. Other electronic devices (e.g. cell phones) are not allowed, and should be turned off for the duration of the exam.
- You may use one hand-written 8.5 by 11 inch page of notes.
- Show all work for full credit.
- You have $60+$ minutes to complete the exam.

1. Find the general solution to the differential equations:
(a) (5 points)

$$
y^{\prime \prime}-2 y^{\prime}-3 y=t e^{t}
$$

(b) (5 points)

$$
y^{\prime \prime}-2 y^{\prime}-3 y=g(t)
$$

Hint: Express your answer using integrals.
2. (10 points) Suppose that the motion of a spring-mass system satisfies

$$
u^{\prime \prime}+u^{\prime}+1.5 u=\sin (2 t)
$$

and that the mass starts $(t=0)$ at the equilibrium position from rest. Find the the position $u(t)$ at any time t.
3. Compute the following Laplace transforms using the definition, or using only the numbers $1,13,14,18$, and 19 on the table.
(a) (5 points)

$$
\mathcal{L}\left\{t^{2} e^{\pi t}\right\}
$$

(b) (5 points)

$$
\mathcal{L}\left\{u_{3}(t)\left(t^{2}-2 t-1\right)\right\}
$$

4. (10 points) Use the Laplace transform to solve the following IVP using the table:

$$
y^{\prime \prime}-y=\left\{\begin{array} { l l }
{ 1 } & { t < 2 } \\
{ t / 3 } & { 2 \leq t }
\end{array} \quad \left\{\begin{array}{l}
y(0)=0 \\
y^{\prime}(0)=0
\end{array}\right.\right.
$$

5. (10 points) A spring-mass system has a spring constant of $2 \mathrm{~N} / \mathrm{m}$. A mass of 8 kg is attached to the spring. Let γ be the damping constant of the system.
(a) (2 points) What is the natural frequency of the system?
(b) (2 points) Suppose $\gamma=9$. Is the (free) system under-damped, over-damped or critically damped?
(c) (2 points) From now on, suppose $\gamma=2$. Find the quasi-frequency of the (free) system.
(d) (2 points) Suppose we apply an external force $F(t)=5 \cos (w t) \mathrm{N}$. What is the resonant frequency of this forced system?
(e) (2 points) Write down the initial value problem corresponding to this forced system where w is the resonant frequency, and the mass starts at rest from the equilibrium position.
6. (3 bonus points) Compute the laplace transform of $\ln (t)$ by following these steps.
(a) (1 point) Differentiate the formula

$$
\mathcal{L}\left(t^{p}\right)=\int_{0}^{\infty} e^{-s t} t^{p} d t=\frac{\Gamma(p+1)}{s^{p+1}}
$$

with respect to p. For the the middle term, move the differential operator $\frac{d}{d p}$ inside the integral and apply it to the integrand.
(b) (1 point) Simplify as much as possible, and then evaluate the resulting expression at $p=0$.
(c) (1 point) What is $\mathcal{L}(\ln (t))$?

Table of Laplace transforms:

$$
f(t)=\mathcal{L}^{-1}\{F(s)\} \quad F(s)=\mathcal{L}\{f(t)\}
$$

1. 1
$\frac{1}{s}, \quad s>0$
2. $e^{a t}$
$\frac{1}{s-a}, \quad s>a$
3. $t^{n}, \quad n=$ positive integer $\quad \frac{n!}{s^{n+1}}, \quad s>0$
4. $t^{p}, \quad p>-1$
$\frac{\Gamma(p+1)}{s^{p+1}}, \quad s>0$
5. $\sin a t$
$\frac{a}{s^{2}+a^{2}}, \quad s>0$
6. $\cos a t$
$\frac{s}{s^{2}+a^{2}}, \quad s>0$
7. $\sinh a t$
$\frac{a}{s^{2}-a^{2}}, \quad s>|a|$
8. $\cosh a t$
$\frac{s}{s^{2}-a^{2}}, \quad s>|a|$
9. $e^{a t} \sin b t$
$\frac{b}{(s-a)^{2}+b^{2}}, \quad s>a$
10. $e^{a t} \cos b t$
$\frac{s-a}{(s-a)^{2}+b^{2}}, \quad s>a$
11. $t^{n} e^{a t}, \quad n=$ positive integer $\frac{n!}{(s-a)^{n+1}}$
12. $u_{c}(t)$
13. $u_{c}(t) f(t-c)$
$\frac{e^{-c s}}{s}, \quad s>0$
14. $e^{c t} f(t)$
$F(s-c)$
15. $f(c t)$
16. $\int_{0}^{t} f(t-\tau) g(\tau) d \tau$
$\frac{1}{c} F\left(\frac{s}{c}\right), c>0$
17. $\delta(t-c)$
$F(s) G(s)$
$e^{-c s}$
18. $f^{(n)}(t)$
$s^{n} F(s)-s^{n-1} f(0)-\cdots-f^{(n-1)}(0)$
19. $(-t)^{n} f(t)$
$F^{(n)}(s)$
