Spring 2012 Final Exam, Section F, page 1 of 6

1. (5 points) Solve the initial value problem

$$
y^{\prime}+2 y=t e^{-2 t}, \quad y(1)=0
$$

Solution: The integrating factor is $\mu(t)=e^{2 t}$. So we have

$$
\begin{aligned}
\frac{d}{d t}\left(e^{2 t} y\right) & =t e^{-2 t} e^{2 t} \\
e^{2 t} y & =\int t d t \\
e^{2 t} y & =\frac{1}{2} t^{2}+c \\
y & =\left(\frac{1}{2} t^{2}+c\right) e^{-2 t}
\end{aligned}
$$

Using the initial conditions, we find $c=-\frac{1}{2}$, and this gives the final answer.

Spring 2012 Final Exam, Section F, page 2 of 6

2. (5 points) Let $y(t)$ be a solution to the differential equation

$$
y^{\prime}=(y-1)(y-2)^{2}, \quad y(1)=y_{0}
$$

Determine all possible values of y_{0} so that $\lim _{t \rightarrow \infty} y(t)=2$.
Solution: The differential equation has constant solutions at $y=1$ and $y=2$. If $y<1$, then $y^{\prime}<0$ so y is decreasing. If $y>1$, then $y^{\prime}>0$ so y is increasing. The limit will be 2 if $1<y_{0} \leq 2$.
3. (5 points) A tank contains 2 kg of salt disolved in 500 L of water. Fresh water flows in at a rate of $r \mathrm{~L} / \mathrm{s}$, and mixed solution flows out at the same rate.
Determine the value of r so that the amount of salt in the tank is reduced by half in exactly 1 hour.

Solution: The differential equation is $Q^{\prime}=-\frac{Q r}{500}$, with $Q(0)=2$. This is both separable and linear. Either way you solve it, you get $Q=2 e^{-r t / 500}$. Using $Q(3600)=1$, you find $\frac{1}{2}=e^{-3600 r / 500}$, which means $r=\frac{5}{36} \ln 2$.
4. (5 points) Suppose you have an object of mass 1 kg hanging from a spring with spring coefficient $8 \mathrm{~N} / \mathrm{m}$ and damping coefficient $2 \mathrm{~N} /(\mathrm{m} / \mathrm{s})$. An external force (measured in Newtons) of $F_{0} \cos 2 t$ is applied to the system.
Determine the amplitude of the steady state response.

Solution: Using the method of undetermined coefficients, use $Y=A \cos 2 t+B \sin 2 t$. This gives equations $4 A+4 B=F_{0}$ and $4 A-4 B=0$, which means $A=B=F_{0} / 8$.
So the amplitude is $\sqrt{A^{2}+B^{2}}=F_{0} \sqrt{2} / 8$.
5. (5 points) Solve the initial value problem

$$
y^{\prime \prime}+7 y^{\prime}+6 y=\left\{\begin{array}{ll}
0, & 0 \leq t<2 \\
e^{-2 t}, & 2 \leq t
\end{array}, \quad y(0)=3, \quad y^{\prime}(0)=7\right.
$$

Solution: The right hand side can be written $e^{-2 t} u_{2}(t)$, and the Laplace transform is $e^{-4} e^{-2 s} \mathcal{L}\left\{\frac{1}{s+2}\right\}$.
After taking Laplace transforms and solving for Y, we get

$$
\begin{aligned}
Y & =\frac{1}{(s+2)(s+1)(s+6)} e^{-2 s} e^{-4}+\frac{3 s+28}{(s+1)(s+6)} \\
& =\left(\frac{1 / 5}{s+2}-\frac{1 / 4}{s+6}+\frac{1 / 20}{s+1}\right) e^{-2 s} e^{-4}+\frac{5}{s+1}-\frac{2}{s+6}
\end{aligned}
$$

The inverse Laplace transform is

$$
y(t)=u_{2}(t) e^{-4}\left(\frac{1}{5} e^{-2(t-2)}-\frac{1}{4} e^{-6(t-2)}+\frac{1}{20} e^{-(t-2)}\right)+5 e^{-t}-2 e^{-6 t}
$$

6. (5 points) Consider the initial value problem

$$
y^{\prime \prime}+9 y=A \delta_{c}(t), \quad y(0)=0, \quad y^{\prime}(0)=2,
$$

where $\delta_{c}(t)$ is an impulse function (also written $\delta(t-c)$), and A and c are POSITIVE constants.
Find values of A and c so that $y(t)=0$ for all $t>c$.

Solution: Taking the Laplace transform of both sides and solving for Y, we get

$$
Y=A e^{-c s}\left(\frac{1}{s^{2}+9}\right)+\frac{2}{s^{2}+9}
$$

Taking the inverse Laplace transform, we get

$$
y(t)=\frac{2}{3} \sin 3 t+\frac{A}{3} \sin (3 t-3 c) u_{c}(t)
$$

The only way to get zero is if $A=2$ and $3 c=n \pi$ for n odd. For example, c could be $\pi / 3$ or π.

Answer: $A=$ \qquad
\qquad

