Your Name

1	10	
2	10	
3	10	
4	10	
5	10	
Total	50	

- Complete all questions. BOX your answers. Do not write outside the marginal lines.
- One handwritten two-sided sheet of note and calculator are allowed. NO CHEATING!
- In order to receive credit, you must show all of your work; to obtain full credit, you must provide mathematical justifications. If you do not indicate the way in which you solved a problem, you may get little or no credit for it, even if your answer is correct.
- Raise your hand if you have a question.
- You have 50 minutes to complete the midterm.

$$
\begin{array}{ll}
\int x^{a} \mathrm{~d} x=\frac{x^{a+1}}{a+1} & \int \frac{1}{x} \mathrm{~d} x=\ln |x| \\
\int e^{x} \mathrm{~d} x=e^{x} & \int a^{x} \mathrm{~d} x=\frac{a^{x}}{\ln a} \\
\int \sin x \mathrm{~d} x=-\cos x & \int \cos x \mathrm{~d} x=\sin x \\
\int \sec ^{2} x \mathrm{~d} x=\tan x & \int \sec x \tan x \mathrm{~d} x=\sec x \\
\int \csc x \cot x \mathrm{~d} x=-\csc x & \int \csc ^{2} x \mathrm{~d} x=-\cot x \\
\int \sec x \mathrm{~d} x=\ln |\sec x+\tan x| & \int \csc x \mathrm{~d} x=\ln |\csc x+\cot x| \\
\int \tan x \mathrm{~d} x=\ln (\sec x) & \int \cot x \mathrm{~d} x=\ln (\sin x) \\
\int \sinh x \mathrm{~d} x=\cosh x & \int \cosh x \mathrm{~d} x=\sinh x \\
\int \frac{\mathrm{~d} x}{x^{2}+a^{2}}=\frac{1}{a} \arctan \left(\frac{x}{a}\right) & \int \frac{\mathrm{d} x}{\sqrt{a^{2}-x^{2}}}=\arcsin \left(\frac{x}{a}\right) \\
\int \frac{\mathrm{d} x}{x^{2}-a^{2}}=\frac{1}{2 a} \ln \left|\frac{x-a}{x+a}\right| & \int \frac{\mathrm{d} x}{\sqrt{x^{2}+a^{2}}}=\ln \left|x \pm \sqrt{x^{2}+a^{2}}\right|
\end{array}
$$

1. a (4points) Find a differential equation whose general solution is $y=c_{1} e^{-2 t} \cos (2 t)+c_{2} e^{-2 t} \sin (2 t)$.
1.b. (3 pts) Find a differential equation whose general solution is $y=c_{1} e^{-2 t} \cos (2 t)+c_{2} e^{-2 t} \sin (2 t)+$ $\sin (2 t)$.
1.c. (3pts) Find a differential equation whose general solution is $y=c_{1} e^{-2 t}+c_{2} t e^{-2 t}$.
2. (10 points) Solve the following initial value problem:

$$
y^{\prime \prime}+2 y^{\prime}+2 y=(5 t-1) e^{t}+3, \quad y(0)=y^{\prime}(0)=1
$$

This page is intentionally left blank. You can write your solution here.
3. (10 pts) A mas that weighs 8 lb stretches a spring 6 in . The system is acted on by an external force of $8 \sin (8 t) \mathrm{lb}$. If the mass is pulled down 3 in and then released, determine the position of the mass at any time. There is no damped force.
4. (10 pts) Given $y_{1}(t)=t$ satisfying the following differential equation, find a second solution of this equation:

$$
t^{2} y^{\prime \prime}-t(t+2) y^{\prime}+(t+2) y=0, t>0
$$

5. (10 pts) Find the general solution of the following differential equation:

$$
t^{2} y^{\prime \prime}-t(t+2) y^{\prime}+(t+2) y=t^{3} \sin t, \quad t>0
$$

