Your Name

Stude	Student ID #							

- 1
 10

 2
 10

 3
 10

 4
 10

 5
 10

 Total
 50
- Complete all questions. BOX your answers. Do not write outside the marginal lines.
- One handwritten two-sided sheet of note and calculator are allowed. NO CHEATING!
- In order to receive credit, you must **show all of your work**; to obtain full credit, you must **provide mathematical justifications**. If you do not indicate the way in which you solved a problem, you may get little or no credit for it, even if your answer is correct.
- Raise your hand if you have a question.
- You have 50 minutes to complete the midterm.

$$\begin{aligned} \int x^{a} dx &= \frac{x^{a+1}}{a+1} & \int \frac{1}{x} dx &= \ln |x| \\ \int e^{x} dx &= e^{x} & \int a^{x} dx &= \frac{a^{x}}{\ln a} \\ \int \sin x dx &= -\cos x & \int \cos x dx &= \sin x \\ \int \sec^{2} x dx &= \tan x & \int \sec x \tan x dx &= \sec x \\ \int \csc x \cot x dx &= -\csc x & \int \csc^{2} x dx &= -\cot x \\ \int \sec x dx &= \ln |\sec x + \tan x| & \int \csc x dx &= \ln |\csc x + \cot x| \\ \int \tan x dx &= \ln(\sec x) & \int \cot x dx &= \ln(\sin x) \\ \int \sinh x dx &= \cosh x & \int \cosh x dx &= \sinh x \\ \int \frac{dx}{x^{2} + a^{2}} &= \frac{1}{a} \arctan \left(\frac{x}{a}\right) & \int \frac{dx}{\sqrt{x^{2} \pm a^{2}}} &= \ln \left|x \pm \sqrt{x^{2} + a^{2}}\right| \end{aligned}$$

M307C, Win 2013, Mid2	Student ID:	Page 1 of 6

1.a (4points) Find a differential equation whose general solution is $y = c_1 e^{-2t} \cos(2t) + c_2 e^{-2t} \sin(2t)$.

1.b.(3 pts) Find a differential equation whose general solution is $y = c_1 e^{-2t} \cos(2t) + c_2 e^{-2t} \sin(2t) + \sin(2t)$.

1.c. (3pts) Find a differential equation whose general solution is $y = c_1 e^{-2t} + c_2 t e^{-2t}$.

M307C, Win 2013, Mid2

Student ID:

2. (10 points) Solve the following initial value problem:

$$y'' + 2y' + 2y = (5t - 1)e^t + 3, \quad y(0) = y'(0) = 1.$$

M307C, Win 2013	, Mid2
-----------------	--------

Student ID:

This page is intentionally left blank. You can write your solution here.

M307C, V	Vin 2()13, N	/lid2
----------	--------	--------	-------

3. (10 pts) A mas that weighs 8 lb stretches a spring 6 in. The system is acted on by an external force of $8\sin(8t)$ lb. If the mass is pulled down 3 in and then released, determine the position of the mass at any time. There is no damped force.

Student ID:

4. (10 pts) Given $y_1(t) = t$ satisfying the following differential equation, find a second solution of this equation:

 $t^2y'' - t(t+2)y' + (t+2)y = 0, \ t > 0.$

Student ID:

5. (10 pts) Find the general solution of the following differential equation:

 $t^2y'' - t(t+2)y' + (t+2)y = t^3\sin t, \ t > 0.$