Your Name

1	10	
2	10	
3	10	
4	10	
5	10	
Total	50	

- Complete all questions. BOX your answers. Do not write outside the marginal lines.
- One handwritten two-sided sheet of note and calculator are allowed. NO CHEATING!
- In order to receive credit, you must show all of your work; to obtain full credit, you must provide mathematical justifications. If you do not indicate the way in which you solved a problem, you may get little or no credit for it, even if your answer is correct.
- Raise your hand if you have a question.
- You have 50 minutes to complete the midterm.

$$
\begin{array}{ll}
\int x^{a} \mathrm{~d} x=\frac{x^{a+1}}{a+1} & \int \frac{1}{x} \mathrm{~d} x=\ln |x| \\
\int e^{x} \mathrm{~d} x=e^{x} & \int a^{x} \mathrm{~d} x=\frac{a^{x}}{\ln a} \\
\int \sin x \mathrm{~d} x=-\cos x & \int \cos x \mathrm{~d} x=\sin x \\
\int \sec ^{2} x \mathrm{~d} x=\tan x & \int \sec x \tan x \mathrm{~d} x=\sec x \\
\int \csc x \cot x \mathrm{~d} x=-\csc x & \int \csc ^{2} x \mathrm{~d} x=-\cot x \\
\int \sec x \mathrm{~d} x=\ln |\sec x+\tan x| & \int \csc x \mathrm{~d} x=\ln |\csc x+\cot x| \\
\int \tan x \mathrm{~d} x=\ln (\sec x) & \int \cot x \mathrm{~d} x=\ln (\sin x) \\
\int \sinh x \mathrm{~d} x=\cosh x & \int \cosh x \mathrm{~d} x=\sinh x \\
\int \frac{\mathrm{~d} x}{x^{2}+a^{2}}=\frac{1}{a} \arctan \left(\frac{x}{a}\right) & \int \frac{\mathrm{d} x}{\sqrt{a^{2}-x^{2}}}=\arcsin \left(\frac{x}{a}\right) \\
\int \frac{\mathrm{d} x}{x^{2}-a^{2}}=\frac{1}{2 a} \ln \left|\frac{x-a}{x+a}\right| & \int \frac{\mathrm{d} x}{\sqrt{x^{2}+a^{2}}}=\ln \left|x \pm \sqrt{x^{2}+a^{2}}\right|
\end{array}
$$

1. a (4points) Find a differential equation whose general solution is $y=c_{1} e^{-2 t} \cos (2 t)+c_{2} e^{-2 t} \sin (2 t)$.

Solution. Two roots of the characteristic equation are $r=-2 \pm 2 i$. So $(r+2)^{2}=(2 i)^{2}=-4$. This implies

$$
r^{2}+4 r+8=0 .
$$

So the differential equation is $y^{\prime \prime}+4 y^{\prime}+8 y=0$.
1.b.(3 pts) Find a differential equation whose general solution is $y=c_{1} e^{-2 t} \cos (2 t)+c_{2} e^{-2 t} \sin (2 t)+$ $\sin (2 t)$.

From part a, the differential equation is

$$
y^{\prime \prime}+4 y^{\prime}+8 y=(\sin 2 t)^{\prime \prime}+4(\sin 2 t)^{\prime}+8 \sin 2 t=4 \sin 2 t+8 \sin 2 t .
$$

1.c. (3pts) Find a differential equation whose general solution is $y=c_{1} e^{-2 t}+c_{2} t e^{-2 t}$.

The characteristic equation has $r=2$ as double root. So it is

$$
(r+2)^{2}=0
$$

It follows that $y^{\prime \prime}+4 y^{\prime}+4 y=0$.
2. (10 points) Solve the following initial value problem:

$$
y^{\prime \prime}+2 y^{\prime}+2 y=(5 t-1) e^{t}+3, \quad y(0)=y^{\prime}(0)=1
$$

Solution. The characteristic equation $r^{2}+2 r+2=0$ has two roots $r=-1 \pm i$.
The general solution of the homogeneous equation is

$$
y_{h}=c_{1} e^{-t} \cos t+c_{2} e^{-t} \sin t .
$$

The suitable form for the particular solution is $y_{p}=(A t+B) e^{t}+C$.
After some calculation, we see that

$$
y_{p}^{\prime \prime}+2 y_{p}^{\prime}+2 y_{p}=5 A t e^{t}+(4 A+5 B) e^{t}+2 C .
$$

It implies that $A=1, B=-1, C=3 / 2$. The general solution of the original equation is

$$
y=c_{1} e^{-t} \cos t+c_{2} e^{-t} \sin t+t e^{t}-e^{t}+3 / 2
$$

Using the initial values, we get $c_{1}=1 / 2$ and $c_{2}=3 / 2$. So the answer is

$$
y=\frac{1}{2} e^{-t} \cos t+\frac{3}{2} e^{-t} \sin t+t e^{t}-e^{t}+\frac{3}{2} .
$$

3. (10 pts) A mass that weighs 8 lb stretches a spring 6 in . The system is acted on by an external force of $8 \sin (8 t) \mathrm{lb}$. If the mass is pulled down 3 in and then released, determine the position of the mass at any time. There is no damped force.

Solution. $m=\frac{8}{32}=\frac{1}{4}$.
$k=\frac{8}{1 / 2}=16 . \gamma=0$.
The equation is

$$
\frac{1}{4} u^{\prime \prime}+16 u=8 \sin 8 t
$$

or

$$
u^{\prime \prime}+64 u=32 \sin 8 t .
$$

The initial condition is $u(0)=\frac{1}{4}, u^{\prime}(0)=0$.
The characteristic equation has roots $r= \pm 8 i$. So $u_{g}=c_{1} \cos 8 t+c_{2} \sin 8 t$.
The particular solution is of the form $u_{p}=t(A \cos 8 t+B \sin 8 t)$. Solve for A and B we get $A=0, B=-2$. Therefore

$$
u=u_{g}+u_{p}=c_{1} \cos 8 t+c_{2} \sin 8 t-2 t \cos 8 t .
$$

Using the initial values, we get

$$
c_{1}=\frac{1}{4} \text { and } 8 c_{2}-2=0
$$

So

$$
u=\frac{1}{4} \cos 8 t+\frac{1}{4} \sin 8 t-2 t \cos 8 t
$$

4. (10 pts) Given $y_{1}(t)=t$ satisfying the following differential equation, find a second solution of this equation:

$$
t^{2} y^{\prime \prime}-t(t+2) y^{\prime}+(t+2) y=0, t>0
$$

Solution. We use the method of reduction of order. Suppose $y=v y_{1}$ and we want to find v. By using the formula in class, we have

$$
\begin{gathered}
t^{2} v^{\prime \prime} y_{1}+\left(2 t^{2} y_{1}^{\prime}-t(t+2) y_{1}\right) v^{\prime}=0 \\
t^{3}\left(v^{\prime \prime}-v^{\prime}\right)=0 \text { or } v^{\prime \prime}-v^{\prime}=0
\end{gathered}
$$

This differential equation implies $v=C e^{t}+D$. So

$$
y=v y_{1}=C t e^{t}+D t
$$

We choose a second solution $y_{2}=t e^{t}$.
5. (10 pts) Find the general solution of the following differential equation:

$$
t^{2} y^{\prime \prime}-t(t+2) y^{\prime}+(t+2) y=t^{3} \sin t, \quad t>0
$$

Solution. From problem 4, the general solution of the homogeneous equation is

$$
y_{h}=c_{1} t e^{t}+c_{2} t .
$$

We need to find a particular solution. There are several ways to "guess". One way is the same method as in problem 4. Suppose the particular solution is $y_{p}=v y_{1}$ where $y_{1}=$ and we want to find v.
Note that y_{1} is a solution of the homogeneous equation, by using the same formula in class, the left hand side of the original equation is

$$
t^{3}\left(v^{\prime \prime}-v^{\prime}\right)
$$

This implies that

$$
t^{3}\left(v^{\prime \prime}-v^{\prime}\right)=t^{3} \sin t
$$

So $v^{\prime \prime}-v^{\prime}=\sin t$. Solve this differential equation,

$$
v=C e^{t}+\frac{1}{2}(\cos t-\sin t) .
$$

So $y_{p}=v t=C t e^{t}+\frac{1}{2}(\cos t-\sin t) t$. We choose

$$
y_{p}=\frac{1}{2}(\cos t-\sin t) t
$$

The general solution of the original equation is

$$
y=c_{1} t e^{t}+c_{2} t+\frac{1}{2}(\cos t-\sin t) t .
$$

