\qquad
Spring 2013

Instructions.

- DON'T PANIC! If you get stuck, take a deep breath and go on to the next question. Come back to the question you left if you have time at the end.
- There are 4 questions on 6 pages. Make sure your exam is complete.
- You are allowed one double-sided sheet of notes in your own handwriting. You may not use someone else's note sheet.
- You may use a simple scientific calculator, but you don't need to. No fancy calculators or other electronic devices allowed. If you didn't bring a simple calculator, then just don't use a calculator.
- It's fine to leave your answers in exact form. If you use a calculator, approximate to two decimal places.
- Show your work, unless instructed otherwise. If you need more space, raise your hand and I'll give you some extra paper to staple onto the back of your test.
- Don't cheat. If I see that you aren't following the rules, I will report you to UW.

Question	Points	Score
1	17	
2	10	
3	10	
4	11	
Total:	48	

1. (a) (5 points) Solve the IVP (find an explicit formula for y), and find the interval on which your solution is valid.

$$
\frac{d y}{d x}=(1-2 x) y^{2}, \quad y(0)=-\frac{1}{2}
$$

Solution: Separate the variables, and integrate both sides:

$$
\begin{aligned}
\frac{d y}{y^{2}} & =(1-2 x) d x \\
-\frac{1}{y} & =x-x^{2}+C \\
y & =\frac{1}{x^{2}-x-C}
\end{aligned}
$$

Using the initial condition, we get the solution $y=1 /\left(x^{2}-x-2\right)$.
Now the denominator factors as $(x-2)(x+1)$, so our formula is not defined at $x=2, x=-1$. The formula for y^{\prime} is fine everywhere. 0 is in between the bad x-values, so the interval on which our solution is valid is $-1<x<2$.
(b) (5 points) Solve the differential equation. You may leave your answer in implicit form: no need to solve for y.

$$
3 x^{2}+y+(x+2 y) \frac{d y}{d x}=0 .
$$

Solution: First, check for exactness: $M_{y}=1=N_{x}$, so the equation is exact. So let

$$
\begin{aligned}
\psi(x, y) & =\int M(x, y) d x \\
& =\int 3 x^{2}+y d x \\
& =x^{3}+x y+f(y) .
\end{aligned}
$$

Now $\frac{\partial \psi}{\partial y}=N$, so we have

$$
x+f^{\prime}(y)=x+2 y
$$

so $f^{\prime}(y)=2 y$ and $f(y)=y^{2}$.
So $\psi(x, y)=x^{3}+x y+y^{2}$, and the solutions to our DE are given implicitly by the formula

$$
x^{3}+x y+y^{2}=C .
$$

(c) (7 points) Consider the nonseparable, nonlinear differential equation

$$
\frac{d y}{d t}+\frac{2}{t} y=\frac{y^{3}}{t^{2}}, \quad t>0
$$

It is called a Bernoulli equation.
Use the substitution $v=y^{-2}$ to solve the equation. Leave it in general form, with the constant C. Be sure your final answer has the variables y and t only, no v. You may leave your answer in implicit form: no need to solve for y.

Solution: Following the hint, set $v=y^{-2}$ and compute $v^{\prime}(t)$:

$$
\begin{aligned}
\frac{d v}{d t} & =\frac{d v}{d y} \frac{d y}{d t} \\
& =-2 y^{-3} \frac{d y}{d t} .
\end{aligned}
$$

Multiply the whole DE by $-2 y^{-3}$, then we have

$$
\begin{aligned}
-2 y^{-3} \frac{d y}{d t}-4 t^{-1} y^{-2} & =-2 t^{-2}, \text { or } \\
\frac{d v}{d t}-4 t^{-1} v & =-2 t^{-2}
\end{aligned}
$$

Now the DE is linear, with integrating factor $\mu(t)=e^{-4 \ln |t|}=e^{-4 \ln t}$ (since $t>0$). Simplify to get $\mu=t^{-4}$. Multiplying through by μ and rearranging, we have

$$
\begin{aligned}
\frac{d}{d t}\left(v t^{-4}\right) & =-2 t^{-6} \\
v t^{-4} & =\frac{2}{5} t^{-5}+C \\
v & =\frac{2}{5} t^{-1}+C t^{4} \\
v & =\frac{2+C t^{5}}{5 t} \\
y^{-2} & =\frac{2+C t^{5}}{5 t} \\
y^{2} & =\frac{5 t}{2+C t^{5}} \\
y & = \pm \sqrt{\frac{5 t}{2+C t^{5}}}
\end{aligned}
$$

2. Consider the differential equation

$$
y^{\prime}=2 y+3 e^{t} .
$$

(a) (4 points) Find the general form of the solution $y(t)$.

Solution: This DE is linear, so we can use integrating factors with $\mu(t)=e^{-2 t}$. Multiplying through by μ and rearranging, we have

$$
\begin{aligned}
\frac{d}{d t}\left(y e^{-2 t}\right) & =3 e^{-t} \\
y e^{-2 t} & =-3 e^{-t}+C \\
y & =-3 e^{t}+C e^{2 t} .
\end{aligned}
$$

(b) (6 points) Find the solution $y(t)$ that is tangent to the horizontal line $y=-1$.

Solution: If y is to be tangent to the line $y=-1$, then at some t-value we must have equations

$$
y=-1, \quad y^{\prime}=0
$$

So use the formulas for y and y^{\prime} to get equations. Our goal is to find the t-value where the solution touches the line $y=-1$, and then use it to find C.
Setting $y^{\prime}=0$ and $y=-1$ in the differential equation, we have the equation

$$
2=3 e^{t}
$$

which means that $t=\ln \left(\frac{2}{3}\right)$. This is the t-value where the solution and the line are tangent. Now plug $t=\ln \left(\frac{2}{3}\right)$ and $y=-1$ into the general solution:

$$
\begin{aligned}
-1 & =-3 e^{\ln \left(\frac{2}{3}\right)}+C e^{2 \ln \left(\frac{2}{3}\right)} \\
& =-3\left(\frac{2}{3}\right)+C\left(\frac{2}{3}\right)^{2} \\
& =-2+\frac{4}{9} C .
\end{aligned}
$$

Thus $C=\frac{9}{4}$, so our desired solution is $y=-3 e^{t}+\frac{9}{4} e^{2 t}$.
3. Read the instructions here carefully, so you avoid doing extra work!
(a) (5 points) A tank has 80 liters (L) of water with 15 grams (g) of salt dissolved in it. At time $t=0$ water with $20 \mathrm{~g} / \mathrm{L}$ of salt flows into the tank at a rate of $\frac{1}{4} \mathrm{~L} / \mathrm{s}$. At the same time, a drain opens in the bottom of the tank and the well-mixed solution drains out at $1 \mathrm{~L} / \mathrm{s}$.
Let $Q=Q(t)$ be the quantity of salt in the tank in grams. Write a differential equation relating Q, t (in seconds), and Q^{\prime}. Be sure there are no other variables in your expression. You don't have to solve the equation; just set it up.

Solution: The volume V of water in the tank has the formula $V=80-\frac{3}{4} t$. The rate of salt in is $(20) \frac{1}{4}=5 \mathrm{~g} / \mathrm{s}$, and the rate out is $(1) Q / V \mathrm{~g} / \mathrm{s}$. So the differential equation is

$$
\frac{d Q}{d t}=5-\frac{Q}{80-\frac{3}{4} t}
$$

Note that the initial condition $Q(0)=15$ doesn't matter for setting up the equation; only for solving it (which you don't have to do).
(b) (5 points) Let $P=P(t)$ be the number of bacteria in a certain area, where t is in days. The population is modeled by the differential equation

$$
P^{\prime}=r P
$$

for some r. The population is dying off: every five days, the population is cut in half. What is r ?

Solution: Solving this DE, you get $P=P_{0} e^{r t}$, where $P_{0}=P(0)$. Plugging in $t=5$ and $P=P_{0} / 2$, we get the equation

$$
\frac{P_{0}}{2}=P_{0} e^{5 r}
$$

and we can solve for r. Final answer:

$$
r=\frac{\ln \left(\frac{1}{2}\right)}{5} .
$$

4. (a) (4 points) Each of the two slope fields below has a list of differential equations below it. Circle the DE that matches the slope field. (t is the horizontal axis; y is the vertical axis.)

(b) (7 points) Consider the differential equation

$$
\frac{d y}{d t}=\left(y^{2}-1\right)(y+2)
$$

Draw a coordinate plane below. Label the axes, and sketch at least ten solutions to the differential equation.
Read this carefully!: Include all equilibrium solutions. Make sure your solutions start at $t=0$ (or before), and draw them for long enough so that their eventual behavior is clear to me. Include as many different behaviors as possible.

Solution: First, factor the right side: $y^{\prime}=(y-1)(y+1)(y+2)$. Then make the phase line, which shows that $y=1,-2$ are unstable equilibrium solutions and $y=-1$ is stable. Then sketch solutions:

