1. This differential equation is separable. We integrate to get

$$
\begin{aligned}
-\int \frac{d y}{(y-5)^{2}} & =\int \frac{d t}{t} \\
\frac{1}{y-5} & =\ln t+c
\end{aligned}
$$

Using our initial value, we find that $c=1$. Solving for y, we get

$$
y=\frac{1}{\ln t+1}+5
$$

2. This is linear, so we put it into the proper form

$$
y^{\prime}+\frac{2}{t} y=a
$$

We find the multiplying factor

$$
\mu(t)=e^{2 \ln t}=t^{2}
$$

So we have

$$
t^{2} y=\int\left(a t^{2} d t\right)=\frac{a t^{3}}{3}+c
$$

Solving for y, we get

$$
y=\frac{a t}{3}+\frac{c}{t^{2}}
$$

3. If y denotes the mass of dye in the tank, then salt flows in at a rate of $30 e^{-t / 10}$ and out at a rate of $3 y / 10$. So the initial value problem we want to solve is

$$
y^{\prime}=30 e^{-t / 10}-3 y / 10, \quad y(0)=10
$$

This is a linear differential equation, and the multiplying factor is $e^{3 t / 10}$. So we get

$$
y=e^{-3 t / 10} \int 30 e^{t / 5} d t=e^{-3 t / 10}\left(150 e^{t / 5}+c\right)=150 e^{-t / 10}+c e^{-3 t / 10}
$$

The constant is -140 , but then we need to divide everything by volume $(=10 \mathrm{~L})$ to get concentration of dye. The final answer is

$$
y=15 e^{-t / 10}-14 e^{-3 t / 10}
$$

4. The differential equation is $y^{\prime}=r y-d$. It is linear and separable, so you can use either method to find the solution $y=d / r+c e^{r t}$. The initial condition gives $c=P_{0}-d / r$, so the final solution is

$$
y=\frac{d}{r}+\left(P_{0}-\frac{d}{r}\right) e^{r t}
$$

5. (c) The equilibrium points are $\mathrm{y}=1,2$, and 3 . The equilibrium $y=2$ is stable, and the other two are unstable.
