Name and section: $\qquad$

Solution: KEY!! Do not pass out!

Directions:

- You have 50 minutes to complete this exam.
- You are allowed a non-graphing calculator and a sheet of notes.
- Show all of your work, and put a box around your final answer.
- If you need more room, use the backs of the pages, and clearly indicate that you have done so.
- If you have any questions, raise your hand.

| Question | Points | Score |
| :---: | :---: | :---: |
| 1 | 6 |  |
| 2 | 8 |  |
| 3 | 10 |  |
| 4 | 10 |  |
| 5 | 8 |  |
| Total: | 42 |  |

1. (6 points) A spring-mass system has a spring constant of $k=4 \mathrm{~N} / \mathrm{m}$. A mass of 6 kg is attached to the spring. Let $\gamma=5$ be the damping constant of the system.
(a) What is the natural frequency of the system?

Solution: $\sqrt{k / m}=\sqrt{4 / 6}$
(b) Is the system over-damped, critically-damped, or neither? If neither, find the quasifrequency of the system.

Solution: $\gamma=5<2 \sqrt{4 \cdot 6}=2 \sqrt{k m}$, so the answer is neither. Recall that in this case, the quasifrequency is $\mu$ where $r=\lambda+\mu i$. Notice that

$$
6 u^{\prime \prime}+5 u^{\prime}+4 u^{\prime}=0 .
$$

We solve the characteristic equation to see that

$$
\mu=\sqrt{4 \cdot 6 \cdot 4-25} / 2=\sqrt{71} / 2
$$

(c) Suppose we apply an external force $F(t)=4 \cos (\omega t) \mathrm{N}$. What is the resonant frequency ( $\omega_{\max }$ ) of this forced system?

## Solution:

$$
\begin{gathered}
\omega_{\max }=\sqrt{\frac{k}{m}-\frac{\gamma^{2}}{2 m^{2}}}=\sqrt{\frac{4}{6}-\frac{5^{2}}{2 \cdot 6^{2}}} \text { or } \\
\quad \omega_{0} \sqrt{1-\frac{\gamma^{2}}{2 m k}}=\sqrt{\frac{4}{6}} \sqrt{1-\frac{5^{2}}{2 \cdot 4 \cdot 6}}
\end{gathered}
$$

(d)
2. (8 points) A 64 lb object stretches a spring $64 / 9$ feet. There is a damper with damping constant $\gamma=8 \mathrm{lb} \mathrm{s} / \mathrm{ft}$. The object is pulled down 1 foot and released. Use $g=32 \mathrm{ft} / \mathrm{s}$ as your gravitational constant.
(a) Write down a differential equation for the motion of the spring. Include initial values.

Solution: Find $m=64 / 32=2, \gamma=8$, and $k=64 /(64 / 9)=9$. The differential equation is

$$
2 u^{\prime \prime}+8 u^{\prime}+9 u=0 ; \quad u(0)=1, u^{\prime}(0)=0 .
$$

(b) Use the equation you wrote above to find an equation for the motion of the spring.

Solution: The roots of the characteristic equation are $-2 \pm i \sqrt{2} / 2$. The general solution is

$$
e^{-2 t}\left[c_{1} \cos (\sqrt{2} t / 2)+c_{2} \sin (\sqrt{2} t / 2)\right]
$$

Using the initial condition $u(0)=1$, we get that $c_{1}=1$. Then using the condition $u^{\prime}(0)=0$, we find that $c_{2}=2 \sqrt{2}$. So our final solution is

$$
u=e^{-2 t}[\cos (\sqrt{2} t / 2)+(2 \sqrt{2}) \sin (\sqrt{2} t / 2)]
$$

3. (10 points) (a) Give the general solution to the following differential equation.

$$
y^{\prime \prime}-4 y^{\prime}-5 y=e^{-t}
$$

## Solution:

1) Solve the corresponding homogeneous equation $y^{\prime \prime}+4 y^{\prime}+-5 y=0$.

The characteristic equation is $r^{2}+4 r-5=0$. Factoring gives $(r-5)(r+1)=0$, so $r=5$ or -1 .
Thus $y_{c}=c_{1} e^{-t}+c_{2} e^{5 t}$.
2) Find a particular solution. We could guess $Y=A e^{-t}$, but this is a solution to the corresponding homogeneous equation, so we know it won't work. Instead try

$$
Y=A t e^{-t}
$$

Then $Y^{\prime}=A e^{-t}(1-t)$ and $Y^{\prime \prime}=A e^{-t}(t-2)$.
Plug in to get $A e^{-t}(t-2)+4 A e^{-t}(1-t)-5 A e^{-t}=e^{-t}$.
Simplify to $A(-6)=1$, so $A=-\frac{1}{6}, Y=-\frac{1}{6} t e^{-t}$.
3) Add them together to get $y=c_{1} e^{-t}+c_{2} e^{t}-\frac{1}{6} t e^{-t}$.
(b) What family would you guess to find a particular solution (do not solve).

$$
9 y^{\prime \prime}-3 y^{\prime}-7 y=e^{2 t} \cos (3 t)
$$

## Solution:

$$
Y=A e^{2 t} \cos (3 t)+B e^{2 t} \sin (3 t)
$$

4. (10 points) Consider the differential equation $t^{2} y^{\prime \prime}+3 t y^{\prime}-8 y=0, t>0$
(a) Verify that $y_{1}=t^{2}$ is a solution.

Solution: First find $y_{1}^{\prime}=2 t$ and $y^{\prime \prime}=2$. Now plug in to the left side and simplify:
$t^{2}(2)+3 t(2 t)-8\left(t^{2}\right)=2 t^{2}+6 t^{2}-8 t^{2}=0$.
Thus, $y_{1}$ is a particular solution.
(b) Find the general solution for $y$.

Solution: Use reduction of order by assuming $y=y_{1} v$ for some function $v(t)$. Plugging in to the original equation and simplifying gives

$$
\begin{gathered}
t^{2} v^{\prime \prime}+\left(2 \cdot 2 t+\frac{3}{t} t^{2}\right) v^{\prime}=0 \\
v^{\prime \prime}+7 t^{-1} v^{\prime}=0
\end{gathered}
$$

This is a second order differential equation in $v^{\prime}$. Solving, we have

$$
\begin{gathered}
\ln \left(\left|v^{\prime}\right|\right)=-7 \ln (|t|)+c \\
v^{\prime}=c_{1} t^{-7} \\
v=c_{1} t^{-6}+c_{2} \\
y=y_{1} v=c_{1} t^{-4}+c_{2} t^{2}
\end{gathered}
$$

(c) Use a Wronskian to verify that the the solution you got is the general solution. (If you were unable to find a general solution, then make one up.)

Solution: Let $y_{2}=t^{-4}$

$$
W=y_{1}^{\prime} y_{2}-y_{1} y_{2}^{\prime}=2 t \cdot t^{-4}+t^{2} \cdot 4 t^{-5}=6 t^{-3} \neq 0 \text { when } t \neq 0
$$

5. (8 points) (a) Below are four graphs of functions $y(t)$. The $t$ and $y$ axes are shown.





For each equation below, figure out what its solutions would look like. If one of the graphs above could be a solution, write its label in the blank space. If none of the graphs could possibly be a solution, write "NONE". Some graphs might not be used, and some might be repeated. No work necessary.
$y^{\prime \prime}+4 y=0$
D

$$
y^{\prime \prime}+4 y^{\prime}+3 y=0 \quad \text { NONE }
$$

$y^{\prime \prime}-4 y^{\prime}+2 y=0$
B

$$
y^{\prime \prime}+2 y^{\prime}+2 y=0
$$

$\qquad$

Give an example of each of the following. No justification necessary.
(b) A second order nonlinear differential equation.

Solution: There are many examples of answers. Here is one: $y^{\prime \prime} y^{\prime}=1$.
(c) A second order differential equation for a function $u(t)$ such that $\lim _{t \rightarrow \infty} u(t)=0$.

Solution: $u^{\prime \prime}+u^{\prime}+u=0$

