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1. (10 points) Find the general solution to the following second-order differential equation:

4y′′−12y′+9y = 9t.

To find the general solution to this nonhomogeneous differential equation, we recall that the solution
to the nonhomogeneous DE is the sum of a particular solution to the full nonhomogenous DE and the
general solution to the corresponding homogeneous DE.

First, the homogeneous part. The characteristic equation for the homogeneous part of the DE is
4r2−12r+9= 0; this has a double root at r = 3

2 . The general solution to the homogeneous differential
equation is therefore

y = (c1 + c2t)e
3
2 t .

To find a particular solution to the nonhomogeneous DE, we use the method of undetermined
coefficients. The forcing function for the DE is 9t, which isn’t a solution to the homogeneous part of
th equation in any way, so we guess a general polynomial of the same degree, i.e. Y = At +B. Hence
Y ′ = A and Y ′′ = 0. Thus

9t = 4Y ′′−12Y ′+9Y = 4 ·0−12(A)+9(At +B)
= 9At +(−12A+9B).

Equating coefficients gives us the system of equations 9A = 9 and −12A+9B = 0. The first tells us
that A = 1, which in turn in the second equation implies that −12+9B = 0, i.e. B = 4

3 . W therefore
have that

Y = t +
4
3

Finally, the full general solution the differential equation is the sum of the general solution to the
homogeneous DE and the particular solution to the nonhomogeneous DE. So we arrive at the solution

y = (c1 + c2t)e
3
2 t + t +

4
3
.
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2. (10 points) Consider the differential equation

t2y′′−4ty′+6y = 0.

One can check that y1(t) = t2 obeys this DE. Use the method of reduction of order or any other method
of your choosing to find the solution subject to the initial conditions y(1) = 1, y′(1) = 0.

The method of reduction of order has that we guess that the general solution to the DE is equal to our
know solution multiplied by an as-yet undetermined function v(t); that is, let

y(t) = t2v(t)

We now plug y back into the DE to solve for v and hence y. Specifically we have, using the product
rule:

y′ = 2tv+ t2v′ and y′′ = 2v+4tv′+ t2v′′.

Hence

t2y′′−4ty′+6y = t2 (2v+4tv′+ t2v′′
)
−4t

(
2tv+ t2v′

)
+6
(
t2v
)

= 2t2v+4t3v′+ t4v′′−8t2v−4t3v′+6t2v

= t4v′′

= 0

We can divide through by t4 at this point (it doesn’t tell us anything useful) to obtain

v′′ = 0.

The solution to this DE is any linear function in t, i.e.

v(t) = c1t + c2.

Hence
y(t) = t2v(t) = c1t3 + c2t2

is the general solution to the original differential equation (we see that the known function y1(t) = t2

is included in the general solution, which is a good indication that our math is correct so far).

Now we apply initial conditions. We have y(1) = 1, so c1 + c2 = 1. The second IC y′(1) = 0 gives us
3c1 + 2c2 = 0. Solving this system of equations yields c1 = −2 and c2 = 3. Hence we arrive at the
solution to the initial value problem

y =−2t3 +3t2 = (3−2t)t2.
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3. (10 points) Below are the graphs of six functions y(t), with t and y being the horizontal and vertical
axes respectively. The graphs are labeled A through F . The graphs are not all drawn to the same scale,
and axis markings have been purposely omitted.

Each of the functions graphed above is a solution to exactly one of the six differential equations
below. By analyzing the form of the equations’ general solutions, write the letter of the graph next
to the differential equation for which it is the solution. You do not need to show your work in this
question to receive full credit.

1. y′′−3y′+2y = 0: C
The characteristic equation for this DE is r2− 3y+ 2 = 0, which has roots r = 1 and r = 2.
Correspondingly the general solution to this differential equation is y = c1et + c2e2t . Thus any
nonzero solution must grow exponentially and not exhibit any oscillation. The only graph above
that matches these criteria is graph number C.

2. y′′+16y = 0: B
The CE for this equation is r2 +16 = 0, which has roots r = ±4i. Correspondingly the general
solution to this DE is y = c1 cos(4t)+ c2 sin(4t). Thus any nonzero solution must oscillate with
constant amplitude. The only graph above exhibiting this behavior is graph number B.
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3. y′′− y′+ 3
2y = 0: F

The CE for this equation is r2− r+ 3
2 = 0, which has roots r = 1

2 ±
√

5
2 i. Correspondingly the

general solution to this DE is y = e
1
2 t(c1 cos(

√
5

2 t)+ c2 sin(
√

5
2 t)). Thus any nonzero solution

must oscillate with exponentially growing amplitude. The only graph above exhibiting this
behavior is graph number F.

4. y′′+ y′+ 3
2y = 0: D

The CE for this equation is r2 + r+ 3
2 = 0, which has roots r =−1

2 ±
√

5
2 i. Correspondingly the

general solution to this DE is y = e−
1
2 t(c1 cos(

√
5

2 t)+ c2 sin(
√

5
2 t)). Thus any nonzero solution

must oscillate with exponentially decaying amplitude. The only graph above exhibiting this
behavior is graph number D.

5. y′′+ y′+ 1
4y = 0: A

The CE for this equation is r2 + r+ 1
4 = 0, which has a double root at r =−1

2 . Correspondingly
the general solution to this DE is y = (c1t + c2)e−

1
2 t . Thus a nonzero solution to this differential

equation may initially grow or it may cross the equilibrium point, but it must eventually decay
to zero without exhibiting oscillation. The only graph above with this behavior is graph number
A.

6. y′′+2y′ = 0: E
The CE for this equation is r2 + 2r = 0, which has a roots r = 0 and r = −2. Correspondingly
the general solution to this DE is y = c1 + c2e−2t . Thus a nonzero solution to this differential
equation must asymptote to a possibly nonzero constant without oscillating. The only graph
above with this behavior is graph number E.
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4. (10 total points) A series circuit contains a capacitor of 2×10−4 F, an inductor of 2 H, and a resistor
of R ohms. Consider the differential equation governing the charge Q(t) on the capacitor as a function
of time, where Q is in Coulombs and t in seconds.

(a) (2 points) We ascertain that R is such that the system exhibits critical damping. Find R.

We use the series circuit differential equation that we developed in class, i.e.

LQ′′+RQ′+
1
C

Q = E(t),

where Q(t) is the charge on the capacitor as a function of time, and for us L = 2, 1/C =
1/(2×10−4) = 5000 and E(t) is as yet unspecified. Hence we have the differential equation

2Q′′+RQ′+5000Q = E(t).

The corresponding characteristic equation is 2r2 +Rr+5000 = 0. Now critical damping occurs
when the discriminant (‘b2−4ac’) is zero. Thus we must have R2−4 ·2 ·5000= 0, or R2 = 40000.
Taking the positive square root (we know resistance is positive) yields

R = 200 Ω.

(b) (6 points) The initial charge on the capacitor is zero and there is no initial current. Starting at
time t = 0, a constant external voltage of 100 volts is applied, where t is in seconds. Find the the
charge on the capacitor as a function of time. What is the amplitude of the steady-state response?

Using the above information and part (a), we arrive at the the initial value problem

2Q′′+200Q′+5000Q = 100, Q(0) = 0,Q′(0) = 0.

The characteristic equation is 2r2 +200r+5000 = 0 or 2(r+50)2 = 0, to the CE has a repeated
root of r = 50. Hence the general solution to the homogeneous DE is

y = (c1 + c2t)e−50t .

Since the forcing function is constant, we guess a constant for the particular solution, i.e. Y = A
for some value of A. The Y ′ = Y ′′ = 0, so plugging this back into the DE gives us 5000A = 100.
Hence A = 1

50 . The full general solution to the nonhomogeneous DE is

Q = (c1 + c2t)e−50t +
1

50
.

Now we apply initial conditions. Q(0) = 0 implies that c1 =− 1
50 . We have Q′ =−50c1e−50t +

c2e−50t − 50c2te−50t , so Q′(0) implies that −50c1 + c2 = 0. Thus c2 = −1. Hence the solution
to the initial value problem is

Q(t) =
1

50
− 1

50
e−50t− te−50t .

We see from this that the steady-state response is constant at Q= 1
50 Coulombs, i.e. the amplitude

of the forced response is 1
50 Coulombs.
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(c) (2 points) The external voltage is now changed to 100cos(50 t) volts. Will the amplitude of the
steady-state response increase, decrease or stay the same compared to what you found in part
(b)? Justify your answer.

Even though ω = 50 rad/sec is the natural frequency of the system, the amplitude of the steady-
state response will decrease. This is because we are in the state of critical critical damping;
Γ = γ2

km (or correspondingly R2C
L in the case of the series circuit) is equal to 4, i.e. damping

is very large compared to the other coefficients in the equation. We know that resonance (an
increase in the forced response amplitude) only occurs for Γ < 2, so we will definitely see a de-
crease in the amplitude of the steady-state solution.

Alternatively one can use the formula for the steady state amplitude. For the DE my′′+γy′+ky =
F0 cos(ωt) we have forced response amplitude R as

R =
F0√

(k−mω2)2 + γ2ω2
.

Plugging in F0 = 100, m = 2, γ = 200, k = 5000 and ω = 50 gives us

R =
100√

(5000−2 ·502)2 +2002 ·502

=
100√

0+100002

=
1

100
Coulombs.

This is quite clearly less than the previous forced response amplitude of 1
50 Coulombs.
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5. (10 total points) A 1
4 kg mass is placed on a flat frictionless surface and attached to a horizontal spring.

It takes 4 N of force to move the mass 36 cm to the right of its equilibrium position. The mass starts
at rest in its equilibrium position. Starting at time t = 0 seconds a horizontal force of 0.41cos(7t)
Newtons acts on the mass. Friction in this problem is negligible.

(a) (3 points) Formulate an initial value problem that describes the position of the mass at time t.

Let y be the position of the mass, where positive y points to the right. The differential equation is
then in the form

my′′+ γy′+ ky = F0 cos(ωt).

For us m = 1
4 , γ = 0, F0 = 41

100 and ω = 7, so it remains to find the spring constant k. Now a
displacement of 0.36 meters to the right results in a restoring force of Fs =−4 N; since Fs =−ky
we get −4 =−k · 36

100 , so k = 100
9 .

Finally the mass is initially at rest in its equilibrium condition, so we have the initial conditions
y(0) = 0 and y′(0) = 0. Therefore we arrive at the IVP

1
4

y′′+
100
9

y =
41

100
cos(7t), y(0) = 0, y′(0) = 0.

(b) (5 points) Solve the above initial value problem to find the position of the mass at time t. You
may use known formulae to save time, but be sure to indicate if you are quoting a formula you’ve
seen in class.

One could solve this initial value problem in the usual way using the method of undetermined
coefficients. However, consulting our notes we see that this is precisely the case where we get
beats, i.e. we can write the solution to this IVP

y = [Rsin(ω1 t)]sin(ω2 t),

where the first sinusoidal term oscillates much more slowly than the second sinusoidal term.
Specifically, since we worked it out on the board in class in full generality it’s completely okay
to just quote the formula for the solution:

y =
[

2F0

m(ω2
0 −ω2)

sin
(

1
2
(ω0−ω)t

)]
sin
(

1
2
(ω0 +ω)t

)
,

where ω0 =
√

k
m is the system’s natural frequency. For us ω0 =

√
100/9

1/4 = 20
3 . Hence

y =

[
2 · 41

100
1
4(
(20

3

)2−72)
sin
(

1
2

(
20
3
−7
)

t
)]

sin
(

1
2

(
20
3
+7
)

t
)

=

[
−18

25
sin
(
−1

6
t
)]

sin
(

41
6

t
)

So after canceling minus signs we get the solution

y =
18
25

sin
(

1
6

t
)

sin
(

41
6

t
)
.

If you prefer decimals, the solution can be written as

y = 0.72 sin(0.1833 t)sin(6.833 t).
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(c) (2 points) What is the maximum distance the mass achieves from its equilibrium position?
This is easy once we put the solution in the form y = Rcos(ω t − δ ), as the maximum
displacement is just the constant R. But this is exactly what we did in the previous part of
the question, so we conclude that the maximum distance from its equilibrium position achieved
by the mass is

R =
18
25

= 0.72 meters.

(d) (Bonus: 3 points) Estimate the maximum amount of kinetic energy that the mass will have.

Kinetic energy Ek =
1
2mv2, so kinetic energy is maximized when v= y′ is maximum in magnitude.

Since we have a formula for y for all t is quite possible to compute y′ and solve for where it is
a maximum or a minimum; however this is tedious and will take a long time by hand. The
simplification we can make is to realize that we can think of y as a sinusoidal function oscillating
at frequency ω = 41

6 rad/sec, but whose amplitude is varying slowly according to sin(1
6 t).

Since the derivative of a sinusoidal function scales with the amplitude thereof, we expect
maximum amplitude velocity to occur at or near the point where the amplitude of oscillation
is a maximum, i.e. where sin(1

6t) = 1. Round about that point in time we have

y≈ 18
25

sin
(

41
6

t
)
,

so y′ ≈ 18
25 ·

41
6 cos

(41
6 t
)
= 123

25 cos
(41

6 t
)
. The maximum magnitude that this function achieves is

clearly 123
25 , since the cosine part oscillates between −1 and 1. Hence vmax ≈ 123

25 = 4.92 m/s.
It follows that

Emax =
1
2

mv2
max ≈

1
2
· 1

4

(
123
25

)2

=
15129
5000

= 3.0258 Joules.

This estimate is very close to the true maximum energy (found numerically) of 3.0214 Joules.


