Math 307A, Midterm 1 Spring 2013 Name: _____

Instructions.

- **DON'T PANIC!** If you get stuck, take a deep breath and go on to the next question. Come back to the question you left if you have time at the end.
- There are 4 questions on 6 pages. Make sure your exam is complete.
- You are allowed one double-sided sheet of notes in your own handwriting. You may not use someone else's note sheet.
- You may use a simple scientific calculator, but you don't need to. No fancy calculators or other electronic devices allowed. If you didn't bring a simple calculator, then just don't use a calculator.
- It's fine to leave your answers in exact form. If you use a calculator, approximate to two decimal places.
- Show your work, unless instructed otherwise. If you need more space, raise your hand and I'll give you some extra paper to staple onto the back of your test.
- Don't cheat. If I see that you aren't following the rules, I will report you to UW.

Question	Points	Score
1	17	
2	10	
3	10	
4	11	
Total:	48	

1. (a) (5 points) Solve the IVP (find an explicit formula for y), and find the interval on which your solution is valid.

$$\frac{dy}{dx} = (1 - 2x)y^2, \qquad y(0) = -\frac{1}{2}$$

(b) (5 points) Solve the differential equation. You may leave your answer in implicit form: no need to solve for y.

$$3x^2 + y + (x + 2y)\frac{dy}{dx} = 0.$$

(c) (7 points) Consider the nonseparable, nonlinear differential equation

$$\frac{dy}{dt} + \frac{2}{t}y = \frac{y^3}{t^2}, \qquad t > 0.$$

It is called a *Bernoulli equation*.

Use the substitution $v = y^{-2}$ to solve the equation. Leave it in general form, with the constant C. Be sure your final answer has the variables y and t only, no v. You may leave your answer in implicit form: no need to solve for y.

2. Consider the differential equation

$$y' = 2y + 3e^t.$$

(a) (4 points) Find the general form of the solution y(t).

(b) (6 points) Find the solution y(t) that is tangent to the horizontal line y = -1.

- 3. Read the instructions here carefully, so you avoid doing extra work!
 - (a) (5 points) A tank has 80 liters (L) of water with 15 grams (g) of salt dissolved in it. At time t = 0 water with 20 g/L of salt flows into the tank at a rate of $\frac{1}{4}$ L/s. At the same time, a drain opens in the bottom of the tank and the well-mixed solution drains out at 1 L/s.

Let Q = Q(t) be the quantity of salt in the tank in grams. Write a differential equation relating Q, t (in seconds), and Q'. Be sure there are no other variables in your expression. You don't have to solve the equation; just set it up.

(b) (5 points) Let P = P(t) be the number of bacteria in a certain area, where t is in days. The population is modeled by the differential equation

P'=rP

for some r. The population is dying off: every five days, the population is cut in half. What is r?

4. (a) (4 points) Each of the two slope fields below has a list of differential equations below it. Circle the DE that matches the slope field. (t is the horizontal axis; y is the vertical axis.)

(b) (7 points) Consider the differential equation

$$\frac{dy}{dt} = (y^2 - 1)(y + 2)$$

Draw a coordinate plane below. Label the axes, and sketch at least ten solutions to the differential equation.

Read this carefully!: Include all equilibrium solutions. Make sure your solutions start at t = 0 (or before), and draw them for long enough so that their eventual behavior is clear to me. Include as many different behaviors as possible.