Chapter 3: Summary of Second Order Solving Methods

We only discussed solution methods for **linear** second order equations.

Constant Coefficient Methods:

To solve an equation of the form: ay'' + by' + cy = g(t).

1. Homogeneous (when g(t) = 0):

Solve $ar^2 + br + c = 0$.

- (a) If $b^2 4ac > 0$, then the general solution looks like $y(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t}$.
- (b) If $b^2 4ac = 0$, then the general solution looks like $y(t) = c_1 e^{rt} + c_2 t e^{rt}$.
- (c) If $b^2 4ac < 0$, then the general solution looks like $y(t) = c_1 e^{\lambda t} \cos(\omega t) + c_2 e^{\lambda t} \sin(\omega t)$.

2. Nonhomogeneous (when $g(t) \neq 0$):

- (a) Solve the corresponding homogeneous equation and get independent solutions $y_1(t)$ and $y_2(t)$.
- (b) Find any particular solution, Y(t), to ay'' + by' + cy = g(t).
 - Option 1: If g(t) is a product or sum of polynomials, exponentials, sines or cosines, then use **undetermined coefficients**.
 - Option 2: If g(t) involves some function other than those mentioned above, then use variation of parameters.
- (c) General Solution: $y(t) = c_1 y_1(t) + c_2 y_2(t) + Y(t)$.

Nonconstant Coefficient Methods:

To solve an equation of the form: y'' + p(t)y' + q(t)y = g(t).

- 1. Homogeneous (when g(t) = 0):
 - (a) If it is an **Euler equation** $(t^2y'' + \alpha ty' + \beta y = 0)$, then you can solve using the transformation from homework. For all other situations, one solution MUST be given to you!
 - (b) If you are given one solution, y = y₁(t), of y" + p(t)y' + q(t)y = 0, then use reduction of order. That is, write y(t) = u(t)y₁(t), take derivatives and substitute into the equation. Then solve for u(t) (you'll have to solve a first order equation using an integrating factor).
 - (c) General Solution: $y(t) = c_1 y_1(t) + c_2 y_2(t)$.

2. Nonhomogeneous (when $g(t) \neq 0$):

- (a) Solve the corresponding homogeneous equation and get independent solutions $y_1(t)$ and $y_2(t)$. We can't do this, unless it is an Euler equation, so in most cases you would need to be given independent solutions $y_1(t)$ and $y_2(t)$.
- (b) Find any particular solution, Y(t), to y'' + p(t)y' + q(t)y = g(t). In this case, there is only one option: use **variation of parameters**.
- (c) General Solution: $y(t) = c_1 y_1(t) + c_2 y_2(t) + Y(t)$