Chapter 3: Summary of Second Order Solving Methods

We only discussed solution methods for linear second order equations.

Constant Coefficient Methods:

To solve an equation of the form: $a y^{\prime \prime}+b y^{\prime}+c y=g(t)$.

1. Homogeneous (when $g(t)=0$):

Solve $a r^{2}+b r+c=0$.
(a) If $b^{2}-4 a c>0$, then the general solution looks like $y(t)=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}$.
(b) If $b^{2}-4 a c=0$, then the general solution looks like $y(t)=c_{1} e^{r t}+c_{2} t e^{r t}$.
(c) If $b^{2}-4 a c<0$, then the general solution looks like $y(t)=c_{1} e^{\lambda t} \cos (\omega t)+c_{2} e^{\lambda t} \sin (\omega t)$.
2. Nonhomogeneous (when $\mathbf{g}(\mathbf{t}) \neq 0$):
(a) Solve the corresponding homogeneous equation and get independent solutions $y_{1}(t)$ and $y_{2}(t)$.
(b) Find any particular solution, $Y(t)$, to $a y^{\prime \prime}+b y^{\prime}+c y=g(t)$.

- Option 1: If $g(t)$ is a product or sum of polynomials, exponentials, sines or cosines, then use undetermined coefficients.
- Option 2: If $g(t)$ involves some function other than those mentioned above, then use variation of parameters.
(c) General Solution: $y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)+Y(t)$.

Nonconstant Coefficient Methods:

To solve an equation of the form: $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)$.

1. Homogeneous (when $g(t)=0)$:
(a) If it is an Euler equation $\left(t^{2} y^{\prime \prime}+\alpha t y^{\prime}+\beta y=0\right)$, then you can solve using the transformation from homework. For all other situations, one solution MUST be given to you!
(b) If you are given one solution, $y=y_{1}(t)$, of $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$, then use reduction of order.
That is, write $y(t)=u(t) y_{1}(t)$, take derivatives and substitute into the equation.
Then solve for $u(t)$ (you'll have to solve a first order equation using an integrating factor).
(c) General Solution: $y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$.
2. Nonhomogeneous (when $\mathbf{g}(\mathbf{t}) \neq \mathbf{0}$):
(a) Solve the corresponding homogeneous equation and get independent solutions $y_{1}(t)$ and $y_{2}(t)$. We can't do this, unless it is an Euler equation, so in most cases you would need to be given independent solutions $y_{1}(t)$ and $y_{2}(t)$.
(b) Find any particular solution, $Y(t)$, to $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)$.

In this case, there is only one option: use variation of parameters.
(c) General Solution: $y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)+Y(t)$

