2.1: Integrating Factors

Some Observations and Motivation:

1. The first observation is the product rule: \(\frac{d}{dt} \left(f(t)y \right) = f(t) \frac{dy}{dt} + f'(t)y. \)

Here are a couple of quick derivative examples (we are assuming \(y \) is a function of \(t \)):

\[
\frac{d}{dt} (t^3 y) = t^3 \frac{dy}{dt} + 3t^2 y \quad \text{and} \quad \frac{d}{dt} (e^{4t} y) = e^{4t} \frac{dy}{dt} + 4e^{4t} y.
\]

Thus, \(f(t) \frac{dy}{dt} + f'(t)y = g(t) \) can be rewritten as \(\frac{d}{dt} (f(t)y) = g(t). \)

2. The second observation (using the chain rule with \(e^{F(x)} \)):

\[
\frac{d}{dt} (e^{F(t)} y) = e^{F(t)} \frac{dy}{dt} + F'(t)e^{F(t)} y.
\]

Integrating Factor Method:

If we start with \(\frac{dy}{dt} + p(t)y = g(t) \) AND if we can find an antiderivative of \(p(t) \), then we can use the following process:

1. First rewrite the differential equation in the form: \(\frac{dy}{dt} + p(t)y = g(t) \)

2. Find any antiderivative of \(p(t) \) and write \(\mu(t) = e^{\int p(t) \, dt} \)

3. Multiply the entire equation by \(\mu(t) \) and use the facts from above, so

\[
\frac{dy}{dt} + p(t)y = g(t) \quad \text{becomes} \quad \mu(t) \frac{dy}{dt} + p(t)\mu(t)y = g(t)\mu(t) \quad \text{which becomes} \quad \frac{d}{dt} (\mu(t)y) = g(t)\mu(t)
\]

4. Integrate with respect to \(t \) and you are done! (Of course, as always, also simplify, use initial conditions and check your work)

NOTES:

1. This is a method for first order linear differential equations. Meaning you can only have \(y \) to the first power, and nothing else in terms of \(y \).

2. Using the substitution idea that I introduced in the previous section, you can sometimes turn a nonlinear problem into a linear problem. Here are two examples:

 • Using \(u = e^y \) on the equation \(e^y \frac{dy}{dx} - xe^y = 2x \) yields the linear equation \(\frac{du}{dx} - xu = 2x \).

 • Using \(u = \ln(y) \) on the equation \(\frac{1}{y} \frac{dy}{dx} - \frac{\ln(y)}{x} = x \) yields the linear equation \(\frac{du}{dx} - \frac{u}{x} = x \).

3. A small note about the form of some answers from the textbook:

 When we are unable to integrate a function in an elementary way, you will sometimes see an answer written in the following form \(\int f(x) \, dx = \int_{x_0}^{x} f(u) \, du + C \), where \(x_0 \) is the \(x \)-value of some initial condition.

 There is nothing scary happening here, let me give you an example to ease your mind.

 Consider \(\int x^2 \, dx \) and \(\int_{0}^{x} u^2 \, du + C \). Let me compute both:

 \[
 \int x^2 \, dx = \frac{1}{3} x^3 + C \quad \text{and} \quad \int_{0}^{x} u^2 \, du + C = \frac{1}{3} u^3 \bigg|_{0}^{x} + C = \frac{1}{3} x^3 + C.
 \]

 Notice they are the same. This gives a way to explicitly include your initial condition ‘+C’ in writing down your final answer even if you can’t integrate.
Integrating Factor Examples:

1. Find the explicit solution to \(4\frac{dy}{dt} - 8y = 4e^{5t}\) with \(y(0) = \frac{2}{3}\).

 Solution:

 (a) Rewrite: \(\frac{dy}{dt} - 2y = e^{5t}\), so \(p(t) = -2, g(t) = e^{5t}\).

 (b) Integrating Factor: \(\int p(t)\,dt = \int -2\,dt = -2t + C, \mu(t) = e^{-2t}\).

 (c) Multiply: \(\frac{dy}{dt} + 2y = e^{5t}\) becomes \(e^{-2t}\frac{dy}{dt} + 2e^{-2t}y = e^{3t}\) which becomes \(\frac{d}{dt} (e^{-2t}y) = e^{3t}\).

 (d) Integrate: \(e^{-2t}y = \int e^{3t}\,dt = \frac{1}{3}e^{3t} + C, \) so \(y = \frac{1}{3}e^{5t} + Ce^{2t}\).

 Using the initial condition gives, \(\frac{2}{3} = \frac{1}{3} + C, \) so \(C = \frac{1}{3}\).

 For a final answer of \(y = \frac{1}{3}e^{5t} + \frac{1}{3}e^{2t}\).

2. Find the explicit solution to \(t\frac{dy}{dt} + 2y = \cos(t)\) with \(y(\pi) = 1\).

 Solution:

 (a) Rewrite: \(\frac{dy}{dt} + \frac{2}{t}y = \frac{\cos(t)}{t}\), so \(p(t) = \frac{2}{t}, g(t) = \frac{\cos(t)}{t}\).

 (b) Integrating Factor: \(\int p(t)\,dt = \int \frac{2}{t}\,dt = 2 \ln |t| + C = \ln(t^2) + C, \) so \(\mu(t) = e^{\ln(t^2)} = t^2\).

 (c) Multiply: \(\frac{dy}{dt} + \frac{2}{t}y = \frac{\cos(t)}{t}\) becomes \(t^2\frac{dy}{dt} + 2ty = t \cos(t)\) which becomes \(\frac{d}{dt} (t^2y) = t \cos(t)\).

 (d) Integrate: \(t^2y = \int t \cos(t)\,dt = t \sin(t) + \cos(t) + C\) (using by parts), so \(y = \frac{\sin(t)}{t} + \frac{\cos(t)}{t^2} + \frac{C}{t^2}\).

 Using the initial condition gives, \(1 = 0 - \frac{1}{t} + \frac{C}{t^2} + C, \) so \(C = t^2 + 1\).

 For a final answer of \(y = \frac{\sin(t)}{t} + \frac{\cos(t)}{t^2} + \frac{(t^2+1)}{t^2}\).

3. Find the explicit solution to \(\cos(y)\frac{dy}{dt} - \frac{\sin(y)}{t} = t\) with \(y(2) = 0\). (Hint: Start with \(u = \sin(y)\))

 Solution:

 Using \(u = \sin(y)\) we get \(\frac{du}{dt} = \cos(y)\frac{dy}{dt}\), so the differential equation can be rewritten at \(\frac{du}{dt} - \frac{1}{t}u = t\).

 Now we will solve this:

 (a) Rewrite: \(p(t) = -\frac{1}{t}, g(t) = t\).

 (b) Integrating Factor: \(\int p(t)\,dt = \int -\frac{1}{t}\,dt = -\ln(t) + C = \ln(\frac{1}{t}) + C, \) so \(\mu(t) = e^{\ln(1/t)} = \frac{1}{t}\).

 (c) Multiply: \(\frac{du}{dt} - \frac{1}{t}u = t\) becomes \(\frac{1}{t^2}\frac{du}{dt} - \frac{1}{t^2}u = 1\) which becomes \(\frac{d}{dt} \left(\frac{1}{t}u\right) = 1\).

 (d) Integrate: \(\frac{1}{t}u = \int 1\,dt = t + C, \) so \(u = t^2 + Ct\).

 Going back to \(y\) gives \(\sin(y) = t^2 + Ct\).

 Using the initial condition gives, \(\sin(0) = 2^2 + 2C, \) so \(C = -2\).

 For an answer of \(\sin(y) = t^2 - 2t, \) or \(y = \sin^{-1}(t^2 - 2t)\).