Laplace Transform Fact Sheet

General and Important Facts:

	General Result	Examples
Definition :	$\mathcal{L}\{f(t)\}(s)=\int_{0}^{\infty} e^{-s t} f(t) d t$	
Linearity :	$\mathcal{L}\left\{c_{1} y_{1}(t)+c_{2} y_{2}(t)\right\}=c_{1} \mathcal{L}\left\{y_{1}(t)\right\}+c_{2} \mathcal{L}\left\{y_{2}(t)\right\}$	$\mathcal{L}\left\{3 e^{2 t}-5 t^{2}\right\}=3 \mathcal{L}\left\{e^{2 t}\right\}-5 \mathcal{L}\left\{t^{2}\right\}$
Linearity :	$\mathcal{L}^{-1}\left\{c_{1} F(s)+c_{2} G(s)\right\}=c_{1} \mathcal{L}^{-1}\{F(s)\}+c_{2} \mathcal{L}^{-1}\{G(s)\}$	$\mathcal{L}^{-1}\left\{\frac{2}{s+1}-\frac{4}{s}\right\}=2 \mathcal{L}^{-1}\left\{\frac{1}{s+1}\right\}-4 \mathcal{L}^{-1}\left\{\frac{1}{s}\right\}$
1st Deriv. :	$\mathcal{L}\left\{y^{\prime}\right\}=s \mathcal{L}\{y\}-f(0)$	
2nd Deriv. :	$\mathcal{L}\left\{y^{\prime \prime}\right\}=s^{2} \mathcal{L}\{y\}-s f(0)-f^{\prime}(0)$	
Exponentials :	$\mathcal{L}\left\{e^{c t} f(t)\right\}(s)=\mathcal{L}\{f(t)\}(s-c)$	$\mathcal{L}\left\{e^{5 t} \sin (2 t)\right\}(s)=\mathcal{L}\{\sin (2 t)\}(s-5)$
Polynomials :	$\mathcal{L}\left\{t^{n} f(t)\right\}(s)=(-1)^{n} \frac{d^{n}}{d s^{n}}(\mathcal{L}\{f(t)\}(s))$	$\mathcal{L}\{t \sin (5 t)\}=-\frac{d}{d s}(\mathcal{L}\{\sin (5 t)\})$
Unit step :	$u_{c}(t)= \begin{cases}0, \quad t<c ; \\ 1, \quad t \geq c . & u_{2}(t)=\left\{\begin{array}{l}0, \quad t<2 ; \\ 1, \quad t \geq 2 .\end{array}\right. \\ \hline \text { Unit step : } & \mathcal{L}\left\{u_{c}(t) f(t-c)\right\}=e^{-c s} \mathcal{L}\{f(t)\} \\ \hline\end{cases}$	$\mathcal{L}\left\{u_{3}(t) e^{t-3}\right\}=e^{-3 s} \mathcal{L}\left\{e^{t}\right\}$

Elementary Laplace Transform Table: Here n is a positive integer.

$f(t)=\mathcal{L}^{-1}\{F(s)\}$	$F(s)=\mathcal{L}\{f(t)\}$	Examples/Notes:
1	$\frac{1}{s}$	$\mathcal{L}\{6\}=6 \mathcal{L}\{1\}=\frac{6}{s}$
$e^{a t}$	$\frac{1}{s-a}$	$\mathcal{L}\left\{4 e^{5 t}\right\}=\frac{4}{s-5}$
$\cos (b t)$	$\frac{s}{s^{2}+b^{2}}$	$\mathcal{L}\left\{7 \cos \left(\frac{1}{2} t\right)\right\}=\frac{7 s}{s^{2}+1 / 4}$
$\sin (b t)$	$\frac{b}{s^{2}+b^{2}}$	$\mathcal{L}\{5 \sin (3 t)\}=\frac{5 \cdot 3}{s^{2}+9}=\frac{15}{s^{2}+9}$
$e^{a t} \cos (b t)$	$\frac{s-a}{(s-a)^{2}+b^{2}}$	$\mathcal{L}\left\{6 e^{2 t} \cos (t)\right\}=\frac{6(s-2)}{(s-2)^{2}+1}$
$e^{a t} \sin (b t)$	$\frac{b}{(s-a)^{2}+b^{2}}$	$\mathcal{L}\left\{2 e^{t} \sin (5 t)\right\}=\frac{2 \cdot 5}{(s-1)^{2}+25}=\frac{10}{(s-1)^{2}+25}$
t^{n}	$\frac{n!}{s^{n+1}}$	$\mathcal{L}\{t\}=\frac{1}{s^{2}}, \mathcal{L}\left\{t^{3}\right\}=\frac{3!}{t^{4}}$
$t^{n} e^{a t}$	$\frac{n!}{\left(s-a n^{n+1}\right.}$	$\mathcal{L}\left\{7 t^{2} e^{8 t}\right\}=\frac{7 \cdot 2}{(s-8)^{2}}=\frac{14}{(s-8)^{2}}$
$u_{c}(t)$	$\frac{e^{-c s}}{s}$	$\mathcal{L}\left\{9 u_{2}(t)\right\}=\frac{9 e^{-2 s}}{s}$
$u_{c}(t) f(t-c)$	$e^{-c s} F(s)$	$\mathcal{L}\left\{u_{3}(t) e^{t-3}\right\}=e^{-3 s} \mathcal{L}\left\{e^{t}\right\}=\frac{e^{-3 s}}{s-1}$
$\left(e^{b t}+e^{-b t}\right) / 2=\cosh (b t)$	$\frac{s}{s^{2}-b^{2}}$	$\mathcal{L}\{\cosh (2 t)\}=\frac{s}{s^{2}-4}$
$\left(e^{b t}-e^{-b t}\right) / 2=\sinh (b t)$	$\frac{b}{s^{2}-b^{2}}$	$\mathcal{L}\{\sinh (3 t)\}=\frac{3}{s^{2}-9}$
t^{p}	$\frac{\Gamma(p+1)}{s^{p+1}}$	$\Gamma(p+1)=\int_{0}^{\infty} t^{p} e^{-t} d t$ is the Gamma function
$\delta(t-c)$	$e^{-c s}$	$\delta(t-c)$ is the unit impulse function at $t=c$

Laplace Transform Method:

To solve $a y^{\prime \prime}+b y^{\prime}+c y=g(t)$, where $g(t)$ can be any forcing function (we even discuss how it can have discontinuities).

1. Take the Laplace transform of both sides.

Since the transform is linear, we get $a \mathcal{L}\left\{y^{\prime \prime}\right\}+b \mathcal{L}\left\{y^{\prime}\right\}+c \mathcal{L}\{y\}=\mathcal{L}\{g(t)\}$.
2. Use the rules for the 1st and 2 nd derivative and solve for $\mathcal{L}\{y\}$.

Since $\mathcal{L}\left\{y^{\prime}\right\}=s \mathcal{L}\{y\}-f(0)$ and $\mathcal{L}\left\{y^{\prime \prime}\right\}=s^{2} \mathcal{L}\{y\}-s f(0)-f^{\prime}(0)$,
we get $\left(a s^{2}+b s+c\right) \mathcal{L}\{y\}-(a s+b) f(0)-a f^{\prime}(0)=\mathcal{L}\{g(t)\}$.
Also replace $\mathcal{L}\{g(t)\}$ by its Laplace transform. Now solve for $\mathcal{L}\{y\}$.

3. Partial Fractions:

Break up the expression you found into partial fractions.

4. Look in the table for the inverse Laplace transform:

Look up the answers in the table.
Elementary Inverse Laplace Transform Table: Most inverses are easy to get from the previous table, but sometimes you may have to rewrite the expression in order to make it look like the table. Below I have rewritten the rules from the previous page in terms of the inverse.

$f(t)=\mathcal{L}^{-1}\{F(s)\}$	Examples/Notes :
$\mathcal{L}^{-1}\left\{\frac{1}{s-a}\right\}=e^{a t}$	$\mathcal{L}^{-1}\left\{\frac{1}{s-5}\right\}=e^{5 t}$
$\mathcal{L}^{-1}\left\{\frac{s}{s^{2}+b^{2}}\right\}=\cos (b t)$	$\mathcal{L}^{-1}\left\{\frac{s}{s^{2}+4}\right\}=\cos (2 t)$
$\mathcal{L}^{-1}\left\{\frac{1}{s^{2}+b^{2}}\right\}=\frac{1}{b} \sin (b t)$	$\mathcal{L}^{-1}\left\{\frac{1}{s^{2}+9}\right\}=\frac{1}{3} \sin (3 t)$
$\mathcal{L}^{-1}\left\{\frac{(s-a)}{(s-a)^{2}+b^{2}}\right\}=e^{a t} \cos (b t)$	$\mathcal{L}^{-1}\left\{\frac{s-3}{(s-3)^{2}+16}\right\}=e^{3 t} \cos (4 t)$
$\mathcal{L}^{-1}\left\{\frac{1}{(s-a)^{2}+b^{2}}\right\}=\frac{1}{b} e^{a t} \sin (b t)$	$\mathcal{L}^{-1}\left\{\frac{1}{(s+1)^{2}+25}\right\}=\frac{1}{5} e^{-t} \cos (5 t)$
$\mathcal{L}^{-1}\left\{\frac{1}{s^{n}}\right\}=\frac{1}{(n-1)!} t^{n-1}$	$\mathcal{L}^{-1}\left\{\frac{1}{s^{3}}\right\}=\frac{1}{2} t^{2}$
$\mathcal{L}^{-1}\left\{\frac{1}{(s-a)^{n}}\right\}=\frac{1}{(n-1)!} t^{n-1} e^{a t}$	$\mathcal{L}^{-1}\left\{\frac{1}{(s+2)^{4}}\right\}=\frac{1}{3!} t^{3} e^{-2 t}$
$\mathcal{L}^{-1}\left\{\frac{e^{-c s}}{s}\right\}=u_{c}(t)$	$\mathcal{L}^{-1}\left\{\frac{e^{-7 s}}{s}\right\}=u_{7}(t)$
$\mathcal{L}^{-1}\left\{e^{-c s} F(s)\right\}=u_{c}(t) \mathcal{L}^{-1}\{F(s)\}(t-c)$	$\mathcal{L}^{-1}\left\{\frac{e^{-7 s}}{s-4}\right\}=u_{7}(t) \mathcal{L}^{-1}\left\{\frac{1}{s-4}\right\}(t-7)=u_{7}(t) e^{4(t-c)}$

Examples: Try these on your own before you look at the solutions (solutions on the next page).

1. Solve $y^{\prime \prime}+3 y^{\prime}-4 y=0$ with $y(0)=0$ and $y^{\prime}(0)=6$, using the Laplace transform.
2. Solve $y^{\prime \prime}+2 y+y=0$ with $y(0)=3$ and $y^{\prime}(0)=1$, using the Laplace transform.
3. Solve $y^{\prime \prime}-y=e^{2 t}$ with $y(0)=0$ and $y^{\prime}(0)=1$, using the Laplace transform.
4. Solve $y^{\prime \prime}+y=u_{5}(t)$ with $y(0)=0$ and $y^{\prime}(0)=3$, using the Laplace transform.

Solutions to examples:

1. Solve $y^{\prime \prime}+3 y^{\prime}-4 y=0$ with $y(0)=0$ and $y^{\prime}(0)=6$, using the Laplace transform.
(a) Laplace Transform: $\mathcal{L}\left\{y^{\prime \prime}\right\}+3 \mathcal{L}\left\{y^{\prime}\right\}-4 \mathcal{L}\{y\}=\mathcal{L}\{0\}$.
(b) Use Rules and Solve: $s^{2} \mathcal{L}\{y\}-s y(0)-y^{\prime}(0)+3 s \mathcal{L}\{y\}-3 y(0)-4 \mathcal{L}\{y\}=0$, which becomes: $\left(s^{2}+3 s-4\right) \mathcal{L}\{y\}-6=0$.
Solving for $\mathcal{L}\{y\}$ gives: $\mathcal{L}\{y\}=\frac{6}{s^{2}+3 s-4}$.
(c) Partial Fractions: $\frac{6}{s^{2}+3 s-4}=\frac{6}{(s+4)(s-1)}=\frac{A}{s+4}+\frac{B}{s-1}$ and you find $A=-\frac{6}{5}, B=\frac{6}{5}$.
(d) Inverse Laplace transform:

The solution is: $y(t)=\mathcal{L}^{-1}\left\{\frac{-6 / 5}{s+4}+\frac{6 / 5}{s-1}\right\}=-\frac{6}{5} e^{-4 t}+\frac{6}{5} e^{t}$.
2. Solve $y^{\prime \prime}+2 y+y=0$ with $y(0)=3$ and $y^{\prime}(0)=1$, using the Laplace transform.
(a) Laplace Transform: $\mathcal{L}\left\{y^{\prime \prime}\right\}+2 \mathcal{L}\left\{y^{\prime}\right\}+\mathcal{L}\{y\}=\mathcal{L}\{0\}$.
(b) Use Rules and Solve: $s^{2} \mathcal{L}\{y\}-s y(0)-y^{\prime}(0)+2 s \mathcal{L}\{y\}-2 y(0)+\mathcal{L}\{y\}=0$,
which becomes: $\left(s^{2}+2 s+1\right) \mathcal{L}\{y\}-(7+3 s)=0$.
Solving for $\mathcal{L}\{y\}$ gives: $\mathcal{L}\{y\}=\frac{3 s+7}{s^{2}+2 s+1}$.
(c) Partial Fractions: $\frac{3 s+7}{s^{2}+2 s+1}=\frac{3 s+7}{(s+1)^{2}}=\frac{A}{s+1}+\frac{B}{(s+1)^{2}}$ and you find $A=3, B=-4$.
(d) Inverse Laplace transform:

The solution is: $y(t)=\mathcal{L}^{-1}\left\{\frac{3}{s+1}+\frac{-4}{(s+1)^{2}}\right\}=3 e^{-t}-4 t e^{-t}$.
3. Solve $y^{\prime \prime}-y=e^{2 t}$ with $y(0)=0$ and $y^{\prime}(0)=1$, using the Laplace transform.
(a) Laplace Transform: $\mathcal{L}\left\{y^{\prime \prime}\right\}-\mathcal{L}\{y\}=\mathcal{L}\left\{e^{2 t}\right\}$.
(b) Use Rules and Solve: $s^{2} \mathcal{L}\{y\}-s y(0)-y^{\prime}(0)-\mathcal{L}\{y\}=\frac{1}{s-2}$,
which becomes: $\left(s^{2}-1\right) \mathcal{L}\{y\}-1=\frac{1}{s-2}$.
Solving for $\mathcal{L}\{y\}$ gives: $\mathcal{L}\{y\}=\frac{1}{(s-2)\left(s^{2}-1\right)}+\frac{1}{s^{2}-1}$.
(c) Partial Fractions: $\frac{1}{(s-2)\left(s^{2}-1\right)}=\frac{1}{(s-2)(s-1)(s+1)}=\frac{A}{s-2}+\frac{B}{s-1}+\frac{C}{s+1}$ and you find $A=\frac{1}{3}, B=-\frac{1}{2}$, $C=\frac{1}{6}$.
And $\frac{1}{s^{2}-1}=\frac{1}{(s-1)(s+1)}=\frac{A}{s-1}+\frac{B}{s+1}$ and you find $A=\frac{1}{2}$ and $B=-\frac{1}{2}$.
(d) Inverse Laplace transform:

The solution is: $y(t)=\mathcal{L}^{-1}\left\{\frac{1 / 3}{s-2}-\frac{1 / 2}{s-1}+\frac{1 / 6}{s+1}+\frac{1 / 2}{s-1}-\frac{1 / 2}{s+1}\right\}=2 e^{2 t}+\frac{1}{6} e^{-t}-\frac{1}{2} e^{-t}$.
Thus, $y(t)=\frac{1}{3} e^{2 t}-\frac{1}{3} e^{-t}$.
4. Solve $y^{\prime \prime}+y=u_{5}(t)$ with $y(0)=0$ and $y^{\prime}(0)=3$, using the Laplace transform.
(a) Laplace Transform: $\mathcal{L}\left\{y^{\prime \prime}\right\}+\mathcal{L}\{y\}=\mathcal{L}\left\{u_{5}(t)\right\}$.
(b) Use Rules and Solve: $s^{2} \mathcal{L}\{y\}-s y(0)-y^{\prime}(0)+\mathcal{L}\{y\}=\frac{e^{-5 s}}{s}$,
which becomes: $\left(s^{2}+1\right) \mathcal{L}\{y\}-3=\frac{e^{-5 s}}{s}$.
Solving for $\mathcal{L}\{y\}$ gives: $\mathcal{L}\{y\}=\frac{e^{-5 s}}{s\left(s^{2}+1\right)}+\frac{3}{s^{2}+1}$.
(c) Partial Fractions: $\frac{1}{s\left(s^{2}+1\right)}=\frac{A}{s}+\frac{B s+C}{s^{2}+1}$ and you find $A=1, B=-1$, and $C=0$.
(d) Inverse Laplace transform:

The solution is: $y(t)=\mathcal{L}^{-1}\left\{e^{-5 s}\left(\frac{1}{s}-\frac{s}{s^{2}+1}\right)+3 \frac{1}{s^{2}+1}\right\}$, which is the same as
$u_{5}(t) \mathcal{L}^{-1}\left\{\frac{1}{s}-\frac{s}{s^{2}+1}\right\}(t-5)+3 \mathcal{L}^{-1}\left\{\frac{1}{s^{2}+1}\right\}(t)$, and we get
$y(t)=u_{5}(t)(1-\cos (t-5))+3 \sin (t)$.

